113 lines
4.8 KiB
Python
113 lines
4.8 KiB
Python
|
||
from transformers import AutoModel, AutoTokenizer
|
||
import time
|
||
import importlib
|
||
from toolbox import update_ui, get_conf
|
||
from multiprocessing import Process, Pipe
|
||
|
||
#################################################################################
|
||
class GetGLMHandle(Process):
|
||
def __init__(self):
|
||
super().__init__(daemon=True)
|
||
self.parent, self.child = Pipe()
|
||
self.chatglm_model = None
|
||
self.chatglm_tokenizer = None
|
||
self.start()
|
||
print('初始化')
|
||
|
||
def ready(self):
|
||
return self.chatglm_model is not None
|
||
|
||
def run(self):
|
||
while True:
|
||
try:
|
||
if self.chatglm_model is None:
|
||
self.chatglm_tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True)
|
||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||
if device=='cpu':
|
||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).float()
|
||
else:
|
||
self.chatglm_model = AutoModel.from_pretrained("THUDM/chatglm-6b", trust_remote_code=True).half().cuda()
|
||
self.chatglm_model = self.chatglm_model.eval()
|
||
break
|
||
else:
|
||
break
|
||
except:
|
||
pass
|
||
while True:
|
||
kwargs = self.child.recv()
|
||
try:
|
||
for response, history in self.chatglm_model.stream_chat(self.chatglm_tokenizer, **kwargs):
|
||
self.child.send(response)
|
||
except:
|
||
self.child.send('[Local Message] Call ChatGLM fail.')
|
||
self.child.send('[Finish]')
|
||
|
||
def stream_chat(self, **kwargs):
|
||
self.parent.send(kwargs)
|
||
while True:
|
||
res = self.parent.recv()
|
||
if res != '[Finish]':
|
||
yield res
|
||
else:
|
||
break
|
||
return
|
||
|
||
global glm_handle
|
||
glm_handle = None
|
||
#################################################################################
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||
"""
|
||
多线程方法
|
||
函数的说明请见 request_llm/bridge_all.py
|
||
"""
|
||
global glm_handle
|
||
if glm_handle is None:
|
||
glm_handle = GetGLMHandle()
|
||
observe_window[0] = "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||
|
||
# chatglm 没有 sys_prompt 接口,因此把prompt加入 history
|
||
history_feedin = []
|
||
for i in range(len(history)//2):
|
||
history_feedin.append(["What can I do?", sys_prompt] )
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||
response = ""
|
||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
observe_window[0] = response
|
||
if len(observe_window) >= 2:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("程序终止。")
|
||
return response
|
||
|
||
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
单线程方法
|
||
函数的说明请见 request_llm/bridge_all.py
|
||
"""
|
||
chatbot.append((inputs, ""))
|
||
|
||
global glm_handle
|
||
if glm_handle is None:
|
||
glm_handle = GetGLMHandle()
|
||
chatbot[-1] = (inputs, "ChatGLM尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLM消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……")
|
||
yield from update_ui(chatbot=chatbot, history=[])
|
||
|
||
if additional_fn is not None:
|
||
import core_functional
|
||
importlib.reload(core_functional) # 热更新prompt
|
||
core_functional = core_functional.get_core_functions()
|
||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||
|
||
history_feedin = []
|
||
for i in range(len(history)//2):
|
||
history_feedin.append(["What can I do?", system_prompt] )
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
for response in glm_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
chatbot[-1] = (inputs, response)
|
||
yield from update_ui(chatbot=chatbot, history=history) |