68 lines
2.9 KiB
Python
68 lines
2.9 KiB
Python
model_name = "Qwen"
|
|
cmd_to_install = "`pip install -r request_llm/requirements_qwen.txt`"
|
|
|
|
|
|
from transformers import AutoModel, AutoTokenizer
|
|
import time
|
|
import threading
|
|
import importlib
|
|
from toolbox import update_ui, get_conf
|
|
from multiprocessing import Process, Pipe
|
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns, SingletonLocalLLM
|
|
|
|
|
|
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
# 🔌💻 Local Model
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
@SingletonLocalLLM
|
|
class GetONNXGLMHandle(LocalLLMHandle):
|
|
|
|
def load_model_info(self):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
self.model_name = model_name
|
|
self.cmd_to_install = cmd_to_install
|
|
|
|
def load_model_and_tokenizer(self):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
import os, glob
|
|
import os
|
|
import platform
|
|
from modelscope import AutoModelForCausalLM, AutoTokenizer, GenerationConfig
|
|
|
|
model_id = 'qwen/Qwen-7B-Chat'
|
|
revision = 'v1.0.1'
|
|
self._tokenizer = AutoTokenizer.from_pretrained(model_id, revision=revision, trust_remote_code=True)
|
|
# use fp16
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", revision=revision, trust_remote_code=True, fp16=True).eval()
|
|
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) # 可指定不同的生成长度、top_p等相关超参
|
|
self._model = model
|
|
|
|
return self._model, self._tokenizer
|
|
|
|
def llm_stream_generator(self, **kwargs):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
def adaptor(kwargs):
|
|
query = kwargs['query']
|
|
max_length = kwargs['max_length']
|
|
top_p = kwargs['top_p']
|
|
temperature = kwargs['temperature']
|
|
history = kwargs['history']
|
|
return query, max_length, top_p, temperature, history
|
|
|
|
query, max_length, top_p, temperature, history = adaptor(kwargs)
|
|
|
|
for response in self._model.chat(self._tokenizer, query, history=history, stream=True):
|
|
yield response
|
|
|
|
def try_to_import_special_deps(self, **kwargs):
|
|
# import something that will raise error if the user does not install requirement_*.txt
|
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
|
import importlib
|
|
importlib.import_module('modelscope')
|
|
|
|
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
# 🔌💻 GPT-Academic Interface
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetONNXGLMHandle, model_name) |