208 lines
6.9 KiB
Python
208 lines
6.9 KiB
Python
import os
|
|
import functools
|
|
import re
|
|
import pickle
|
|
import time
|
|
|
|
CACHE_FOLDER = "gpt_log"
|
|
|
|
if not os.path.exists(CACHE_FOLDER):
|
|
os.makedirs(CACHE_FOLDER)
|
|
|
|
|
|
def lru_file_cache(maxsize=128, ttl=None, filename=None):
|
|
"""
|
|
Decorator that caches a function's return value after being called with given arguments.
|
|
It uses a Least Recently Used (LRU) cache strategy to limit the size of the cache.
|
|
maxsize: Maximum size of the cache. Defaults to 128.
|
|
ttl: Time-to-Live of the cache. If a value hasn't been accessed for `ttl` seconds, it will be evicted from the cache.
|
|
filename: Name of the file to store the cache in. If not supplied, the function name + ".cache" will be used.
|
|
"""
|
|
cache_path = os.path.join(CACHE_FOLDER, f"{filename}.cache") if filename is not None else None
|
|
|
|
def decorator_function(func):
|
|
cache = {}
|
|
_cache_info = {
|
|
"hits": 0,
|
|
"misses": 0,
|
|
"maxsize": maxsize,
|
|
"currsize": 0,
|
|
"ttl": ttl,
|
|
"filename": cache_path,
|
|
}
|
|
|
|
@functools.wraps(func)
|
|
def wrapper_function(*args, **kwargs):
|
|
key = str((args, frozenset(kwargs)))
|
|
if key in cache:
|
|
if _cache_info["ttl"] is None or (cache[key][1] + _cache_info["ttl"]) >= time.time():
|
|
_cache_info["hits"] += 1
|
|
print(f'Warning, reading cache, last read {(time.time()-cache[key][1])//60} minutes ago'); time.sleep(2)
|
|
cache[key][1] = time.time()
|
|
return cache[key][0]
|
|
else:
|
|
del cache[key]
|
|
|
|
result = func(*args, **kwargs)
|
|
cache[key] = [result, time.time()]
|
|
_cache_info["misses"] += 1
|
|
_cache_info["currsize"] += 1
|
|
|
|
if _cache_info["currsize"] > _cache_info["maxsize"]:
|
|
oldest_key = None
|
|
for k in cache:
|
|
if oldest_key is None:
|
|
oldest_key = k
|
|
elif cache[k][1] < cache[oldest_key][1]:
|
|
oldest_key = k
|
|
del cache[oldest_key]
|
|
_cache_info["currsize"] -= 1
|
|
|
|
if cache_path is not None:
|
|
with open(cache_path, "wb") as f:
|
|
pickle.dump(cache, f)
|
|
|
|
return result
|
|
|
|
def cache_info():
|
|
return _cache_info
|
|
|
|
wrapper_function.cache_info = cache_info
|
|
|
|
if cache_path is not None and os.path.exists(cache_path):
|
|
with open(cache_path, "rb") as f:
|
|
cache = pickle.load(f)
|
|
_cache_info["currsize"] = len(cache)
|
|
|
|
return wrapper_function
|
|
|
|
return decorator_function
|
|
|
|
|
|
def contains_chinese(string):
|
|
"""
|
|
Returns True if the given string contains Chinese characters, False otherwise.
|
|
"""
|
|
chinese_regex = re.compile(u'[\u4e00-\u9fff]+')
|
|
return chinese_regex.search(string) is not None
|
|
|
|
def extract_chinese_characters(file_path):
|
|
syntax = []
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
content = f.read()
|
|
import ast
|
|
root = ast.parse(content)
|
|
for node in ast.walk(root):
|
|
if isinstance(node, ast.Name):
|
|
if contains_chinese(node.id):
|
|
print(node.id)
|
|
syntax.append(node)
|
|
|
|
return syntax
|
|
|
|
def extract_chinese_characters_from_directory(directory_path):
|
|
chinese_characters = []
|
|
for root, dirs, files in os.walk(directory_path):
|
|
for file in files:
|
|
if file.endswith('.py'):
|
|
file_path = os.path.join(root, file)
|
|
chinese_characters.extend(extract_chinese_characters(file_path))
|
|
return chinese_characters
|
|
|
|
directory_path = './'
|
|
chinese_characters = extract_chinese_characters_from_directory(directory_path)
|
|
word_to_translate = {}
|
|
for d in chinese_characters:
|
|
word_to_translate[d['word']] = "TRANS"
|
|
|
|
def break_dictionary(d, n):
|
|
items = list(d.items())
|
|
num_dicts = (len(items) + n - 1) // n
|
|
return [{k: v for k, v in items[i*n:(i+1)*n]} for i in range(num_dicts)]
|
|
|
|
N_EACH_REQ = 50
|
|
word_to_translate_split = break_dictionary(word_to_translate, N_EACH_REQ)
|
|
LANG = "English"
|
|
|
|
@lru_file_cache(maxsize=10, ttl=1e40, filename="translation_cache")
|
|
def trans(words):
|
|
# from crazy_functions.crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
|
# from toolbox import get_conf, ChatBotWithCookies
|
|
# proxies, WEB_PORT, LLM_MODEL, CONCURRENT_COUNT, AUTHENTICATION, CHATBOT_HEIGHT, LAYOUT, API_KEY = \
|
|
# get_conf('proxies', 'WEB_PORT', 'LLM_MODEL', 'CONCURRENT_COUNT', 'AUTHENTICATION', 'CHATBOT_HEIGHT', 'LAYOUT', 'API_KEY')
|
|
# llm_kwargs = {
|
|
# 'api_key': API_KEY,
|
|
# 'llm_model': LLM_MODEL,
|
|
# 'top_p':1.0,
|
|
# 'max_length': None,
|
|
# 'temperature':0.0,
|
|
# }
|
|
# plugin_kwargs = {}
|
|
# chatbot = ChatBotWithCookies(llm_kwargs)
|
|
# history = []
|
|
# for gpt_say in request_gpt_model_in_new_thread_with_ui_alive(
|
|
# inputs=words, inputs_show_user=words,
|
|
# llm_kwargs=llm_kwargs, chatbot=chatbot, history=[],
|
|
# sys_prompt=f"Translate following words to {LANG}, replace `TRANS` with translated result."
|
|
# ):
|
|
# gpt_say = gpt_say[1][0][1]
|
|
# return gpt_say
|
|
return '{}'
|
|
|
|
translated_result = {}
|
|
for d in word_to_translate_split:
|
|
res = trans(str(d))
|
|
try:
|
|
# convert translated result back to python dictionary
|
|
res_dict = eval(res)
|
|
except:
|
|
print('Unexpected output.')
|
|
translated_result.update(res_dict)
|
|
|
|
print('All Chinese characters:', chinese_characters)
|
|
|
|
|
|
# =================== create copy =====================
|
|
def copy_source_code():
|
|
"""
|
|
一键更新协议:备份和下载
|
|
"""
|
|
from toolbox import get_conf
|
|
import shutil
|
|
import os
|
|
import requests
|
|
import zipfile
|
|
try: shutil.rmtree(f'./multi-language/{LANG}/')
|
|
except: pass
|
|
os.makedirs(f'./multi-language', exist_ok=True)
|
|
backup_dir = f'./multi-language/{LANG}/'
|
|
shutil.copytree('./', backup_dir, ignore=lambda x, y: ['multi-language', 'gpt_log', '.git', 'private_upload'])
|
|
copy_source_code()
|
|
|
|
|
|
for d in chinese_characters:
|
|
d['file'] = f'./multi-language/{LANG}/' + d['file']
|
|
if d['word'] in translated_result:
|
|
d['trans'] = translated_result[d['word']]
|
|
else:
|
|
d['trans'] = None
|
|
|
|
chinese_characters = sorted(chinese_characters, key=lambda x: len(x['word']), reverse=True)
|
|
for d in chinese_characters:
|
|
if d['trans'] is None:
|
|
continue
|
|
|
|
|
|
|
|
with open(d['file'], 'r', encoding='utf-8') as f:
|
|
content = f.read()
|
|
|
|
content.replace(d['word'], d['trans'])
|
|
substring = d['trans']
|
|
substring_start_index = content.find(substring)
|
|
substring_end_index = substring_start_index + len(substring) - 1
|
|
if content[substring_start_index].isalpha() or content[substring_start_index].isdigit():
|
|
content = content[:substring_start_index+1]
|
|
|
|
|