chatgpt_academic/request_llms/bridge_chatglm3.py
binary-husky 5fcd02506c
version 3.75 (#1702)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Refactor function signatures in bridge files

* fix qwen api change

* rename and ref functions

* rename and move some cookie functions

* 增加haiku模型,新增endpoint配置说明 (#1626)

* haiku added

* 新增haiku,新增endpoint配置说明

* Haiku added

* 将说明同步至最新Endpoint

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* private_upload目录下进行文件鉴权 (#1596)

* private_upload目录下进行文件鉴权

* minor fastapi adjustment

* Add logging functionality to enable saving
conversation records

* waiting to fix username retrieve

* support 2rd web path

* allow accessing default user dir

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove yaml deps

* fix favicon

* fix abs path auth problem

* forget to write a return

* add `dashscope` to deps

* fix GHSA-v9q9-xj86-953p

* 用户名重叠越权访问patch (#1681)

* add cohere model api access

* cohere + can_multi_thread

* fix block user access(fail)

* fix fastapi bug

* change cohere api endpoint

* explain version

* # fix com_zhipuglm.py illegal temperature problem (#1687)

* Update com_zhipuglm.py

# fix 用户在使用 zhipuai 界面时遇到了关于温度参数的非法参数错误

* allow store lm model dropdown

* add a btn to reverse previous reset

* remove extra fns

* Add support for glm-4v model (#1700)

* 修改chatglm3量化加载方式 (#1688)

Co-authored-by: zym9804 <ren990603@gmail.com>

* save chat stage 1

* consider null cookie situation

* 在点击复制按钮时激活语音

* miss some parts

* move all to js

* done first stage

* add edge tts

* bug fix

* bug fix

* remove console log

* bug fix

* bug fix

* bug fix

* audio switch

* update tts readme

* remove tempfile when done

* disable auto audio follow

* avoid play queue update after shut up

* feat: minimizing common.js

* improve tts functionality

* deterine whether the cached model is in choices

* Add support for Ollama (#1740)

* print err when doc2x not successful

* add icon

* adjust url for doc2x key version

* prepare merge

---------

Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com>
Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
Co-authored-by: Yuki <903728862@qq.com>
Co-authored-by: zyren123 <91042213+zyren123@users.noreply.github.com>
Co-authored-by: zym9804 <ren990603@gmail.com>
2024-04-30 20:37:41 +08:00

106 lines
4.2 KiB
Python

model_name = "ChatGLM3"
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
from toolbox import get_conf, ProxyNetworkActivate
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 Local Model
# ------------------------------------------------------------------------------------------------------------------------
class GetGLM3Handle(LocalLLMHandle):
def load_model_info(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
self.model_name = model_name
self.cmd_to_install = cmd_to_install
def load_model_and_tokenizer(self):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
from transformers import AutoModel, AutoTokenizer
import os, glob
import os
import platform
LOCAL_MODEL_QUANT, device = get_conf("LOCAL_MODEL_QUANT", "LOCAL_MODEL_DEVICE")
_model_name_ = "THUDM/chatglm3-6b"
# if LOCAL_MODEL_QUANT == "INT4": # INT4
# _model_name_ = "THUDM/chatglm3-6b-int4"
# elif LOCAL_MODEL_QUANT == "INT8": # INT8
# _model_name_ = "THUDM/chatglm3-6b-int8"
# else:
# _model_name_ = "THUDM/chatglm3-6b" # FP16
with ProxyNetworkActivate("Download_LLM"):
chatglm_tokenizer = AutoTokenizer.from_pretrained(
_model_name_, trust_remote_code=True
)
if device == "cpu":
chatglm_model = AutoModel.from_pretrained(
_model_name_,
trust_remote_code=True,
device="cpu",
).float()
elif LOCAL_MODEL_QUANT == "INT4": # INT4
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
trust_remote_code=True,
device="cuda",
load_in_4bit=True,
)
elif LOCAL_MODEL_QUANT == "INT8": # INT8
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
trust_remote_code=True,
device="cuda",
load_in_8bit=True,
)
else:
chatglm_model = AutoModel.from_pretrained(
pretrained_model_name_or_path=_model_name_,
trust_remote_code=True,
device="cuda",
)
chatglm_model = chatglm_model.eval()
self._model = chatglm_model
self._tokenizer = chatglm_tokenizer
return self._model, self._tokenizer
def llm_stream_generator(self, **kwargs):
# 🏃‍♂️🏃‍♂️🏃‍♂️ 子进程执行
def adaptor(kwargs):
query = kwargs["query"]
max_length = kwargs["max_length"]
top_p = kwargs["top_p"]
temperature = kwargs["temperature"]
history = kwargs["history"]
return query, max_length, top_p, temperature, history
query, max_length, top_p, temperature, history = adaptor(kwargs)
for response, history in self._model.stream_chat(
self._tokenizer,
query,
history,
max_length=max_length,
top_p=top_p,
temperature=temperature,
):
yield response
def try_to_import_special_deps(self, **kwargs):
# import something that will raise error if the user does not install requirement_*.txt
# 🏃‍♂️🏃‍♂️🏃‍♂️ 主进程执行
import importlib
# importlib.import_module('modelscope')
# ------------------------------------------------------------------------------------------------------------------------
# 🔌💻 GPT-Academic Interface
# ------------------------------------------------------------------------------------------------------------------------
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(
GetGLM3Handle, model_name, history_format="chatglm3"
)