90 lines
4.3 KiB
Python
90 lines
4.3 KiB
Python
model_name = "LLaMA"
|
|
cmd_to_install = "`pip install -r request_llms/requirements_chatglm.txt`"
|
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
|
|
from toolbox import update_ui, get_conf, ProxyNetworkActivate
|
|
from multiprocessing import Process, Pipe
|
|
from .local_llm_class import LocalLLMHandle, get_local_llm_predict_fns
|
|
from threading import Thread
|
|
|
|
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
# 🔌💻 Local Model
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
class GetLlamaHandle(LocalLLMHandle):
|
|
|
|
def load_model_info(self):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
self.model_name = model_name
|
|
self.cmd_to_install = cmd_to_install
|
|
|
|
def load_model_and_tokenizer(self):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
import os, glob
|
|
import os
|
|
import platform
|
|
huggingface_token, device = get_conf('HUGGINGFACE_ACCESS_TOKEN', 'LOCAL_MODEL_DEVICE')
|
|
assert len(huggingface_token) != 0, "没有填写 HUGGINGFACE_ACCESS_TOKEN"
|
|
with open(os.path.expanduser('~/.cache/huggingface/token'), 'w') as f:
|
|
f.write(huggingface_token)
|
|
model_id = 'meta-llama/Llama-2-7b-chat-hf'
|
|
with ProxyNetworkActivate('Download_LLM'):
|
|
self._tokenizer = AutoTokenizer.from_pretrained(model_id, use_auth_token=huggingface_token)
|
|
# use fp16
|
|
model = AutoModelForCausalLM.from_pretrained(model_id, use_auth_token=huggingface_token).eval()
|
|
if device.startswith('cuda'): model = model.half().to(device)
|
|
self._model = model
|
|
|
|
return self._model, self._tokenizer
|
|
|
|
def llm_stream_generator(self, **kwargs):
|
|
# 🏃♂️🏃♂️🏃♂️ 子进程执行
|
|
def adaptor(kwargs):
|
|
query = kwargs['query']
|
|
max_length = kwargs['max_length']
|
|
top_p = kwargs['top_p']
|
|
temperature = kwargs['temperature']
|
|
history = kwargs['history']
|
|
console_slience = kwargs.get('console_slience', True)
|
|
return query, max_length, top_p, temperature, history, console_slience
|
|
|
|
def convert_messages_to_prompt(query, history):
|
|
prompt = ""
|
|
for a, b in history:
|
|
prompt += f"\n[INST]{a}[/INST]"
|
|
prompt += "\n{b}" + b
|
|
prompt += f"\n[INST]{query}[/INST]"
|
|
return prompt
|
|
|
|
query, max_length, top_p, temperature, history, console_slience = adaptor(kwargs)
|
|
prompt = convert_messages_to_prompt(query, history)
|
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
|
# code from transformers.llama
|
|
streamer = TextIteratorStreamer(self._tokenizer)
|
|
# Run the generation in a separate thread, so that we can fetch the generated text in a non-blocking way.
|
|
inputs = self._tokenizer([prompt], return_tensors="pt")
|
|
prompt_tk_back = self._tokenizer.batch_decode(inputs['input_ids'])[0]
|
|
|
|
generation_kwargs = dict(inputs.to(self._model.device), streamer=streamer, max_new_tokens=max_length)
|
|
thread = Thread(target=self._model.generate, kwargs=generation_kwargs)
|
|
thread.start()
|
|
generated_text = ""
|
|
for new_text in streamer:
|
|
generated_text += new_text
|
|
if not console_slience: print(new_text, end='')
|
|
yield generated_text.lstrip(prompt_tk_back).rstrip("</s>")
|
|
if not console_slience: print()
|
|
# =-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=--=-=-
|
|
|
|
def try_to_import_special_deps(self, **kwargs):
|
|
# import something that will raise error if the user does not install requirement_*.txt
|
|
# 🏃♂️🏃♂️🏃♂️ 主进程执行
|
|
import importlib
|
|
importlib.import_module('transformers')
|
|
|
|
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
# 🔌💻 GPT-Academic Interface
|
|
# ------------------------------------------------------------------------------------------------------------------------
|
|
predict_no_ui_long_connection, predict = get_local_llm_predict_fns(GetLlamaHandle, model_name) |