95 lines
4.1 KiB
Python
95 lines
4.1 KiB
Python
from toolbox import get_conf
|
||
import threading
|
||
import logging
|
||
import os
|
||
|
||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||
#os.environ['VOLC_ACCESSKEY'] = ''
|
||
#os.environ['VOLC_SECRETKEY'] = ''
|
||
|
||
class YUNQUERequestInstance():
|
||
def __init__(self):
|
||
|
||
self.time_to_yield_event = threading.Event()
|
||
self.time_to_exit_event = threading.Event()
|
||
|
||
self.result_buf = ""
|
||
|
||
def generate(self, inputs, llm_kwargs, history, system_prompt):
|
||
# import _thread as thread
|
||
from volcengine.maas import MaasService, MaasException
|
||
|
||
maas = MaasService('maas-api.ml-platform-cn-beijing.volces.com', 'cn-beijing')
|
||
|
||
YUNQUE_SECRET_KEY, YUNQUE_ACCESS_KEY,YUNQUE_MODEL = get_conf("YUNQUE_SECRET_KEY", "YUNQUE_ACCESS_KEY","YUNQUE_MODEL")
|
||
maas.set_ak(YUNQUE_ACCESS_KEY) #填写 VOLC_ACCESSKEY
|
||
maas.set_sk(YUNQUE_SECRET_KEY) #填写 'VOLC_SECRETKEY'
|
||
|
||
self.result_buf = ""
|
||
|
||
req = {
|
||
"model": {
|
||
"name": YUNQUE_MODEL,
|
||
"version": "1.0", # use default version if not specified.
|
||
},
|
||
"parameters": {
|
||
"max_new_tokens": 4000, # 输出文本的最大tokens限制
|
||
"min_new_tokens": 1, # 输出文本的最小tokens限制
|
||
"temperature": llm_kwargs['temperature'], # 用于控制生成文本的随机性和创造性,Temperature值越大随机性越大,取值范围0~1
|
||
"top_p": llm_kwargs['top_p'], # 用于控制输出tokens的多样性,TopP值越大输出的tokens类型越丰富,取值范围0~1
|
||
"top_k": 0, # 选择预测值最大的k个token进行采样,取值范围0-1000,0表示不生效
|
||
"max_prompt_tokens": 4000, # 最大输入 token 数,如果给出的 prompt 的 token 长度超过此限制,取最后 max_prompt_tokens 个 token 输入模型。
|
||
},
|
||
"messages": self.generate_message_payload(inputs, llm_kwargs, history, system_prompt)
|
||
}
|
||
|
||
response = maas.stream_chat(req)
|
||
|
||
for resp in response:
|
||
self.result_buf += resp.choice.message.content
|
||
yield self.result_buf
|
||
'''
|
||
for event in response.events():
|
||
if event.event == "add":
|
||
self.result_buf += event.data
|
||
yield self.result_buf
|
||
elif event.event == "error" or event.event == "interrupted":
|
||
raise RuntimeError("Unknown error:" + event.data)
|
||
elif event.event == "finish":
|
||
yield self.result_buf
|
||
break
|
||
else:
|
||
raise RuntimeError("Unknown error:" + str(event))
|
||
|
||
logging.info(f'[raw_input] {inputs}')
|
||
logging.info(f'[response] {self.result_buf}')
|
||
'''
|
||
return self.result_buf
|
||
|
||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt):
|
||
from volcengine.maas import ChatRole
|
||
conversation_cnt = len(history) // 2
|
||
messages = [{"role": ChatRole.USER, "content": system_prompt},
|
||
{"role": ChatRole.ASSISTANT, "content": "Certainly!"}]
|
||
if conversation_cnt:
|
||
for index in range(0, 2 * conversation_cnt, 2):
|
||
what_i_have_asked = {}
|
||
what_i_have_asked["role"] = ChatRole.USER
|
||
what_i_have_asked["content"] = history[index]
|
||
what_gpt_answer = {}
|
||
what_gpt_answer["role"] = ChatRole.ASSISTANT
|
||
what_gpt_answer["content"] = history[index + 1]
|
||
if what_i_have_asked["content"] != "":
|
||
if what_gpt_answer["content"] == "":
|
||
continue
|
||
if what_gpt_answer["content"] == timeout_bot_msg:
|
||
continue
|
||
messages.append(what_i_have_asked)
|
||
messages.append(what_gpt_answer)
|
||
else:
|
||
messages[-1]['content'] = what_gpt_answer['content']
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = ChatRole.USER
|
||
what_i_ask_now["content"] = inputs
|
||
messages.append(what_i_ask_now)
|
||
return messages |