218 lines
8.2 KiB
Python
218 lines
8.2 KiB
Python
from toolbox import get_conf, get_pictures_list, encode_image
|
||
import base64
|
||
import datetime
|
||
import hashlib
|
||
import hmac
|
||
import json
|
||
from urllib.parse import urlparse
|
||
import ssl
|
||
from datetime import datetime
|
||
from time import mktime
|
||
from urllib.parse import urlencode
|
||
from wsgiref.handlers import format_date_time
|
||
import websocket
|
||
import threading, time
|
||
|
||
timeout_bot_msg = '[Local Message] Request timeout. Network error.'
|
||
|
||
class Ws_Param(object):
|
||
# 初始化
|
||
def __init__(self, APPID, APIKey, APISecret, gpt_url):
|
||
self.APPID = APPID
|
||
self.APIKey = APIKey
|
||
self.APISecret = APISecret
|
||
self.host = urlparse(gpt_url).netloc
|
||
self.path = urlparse(gpt_url).path
|
||
self.gpt_url = gpt_url
|
||
|
||
# 生成url
|
||
def create_url(self):
|
||
# 生成RFC1123格式的时间戳
|
||
now = datetime.now()
|
||
date = format_date_time(mktime(now.timetuple()))
|
||
|
||
# 拼接字符串
|
||
signature_origin = "host: " + self.host + "\n"
|
||
signature_origin += "date: " + date + "\n"
|
||
signature_origin += "GET " + self.path + " HTTP/1.1"
|
||
|
||
# 进行hmac-sha256进行加密
|
||
signature_sha = hmac.new(self.APISecret.encode('utf-8'), signature_origin.encode('utf-8'), digestmod=hashlib.sha256).digest()
|
||
signature_sha_base64 = base64.b64encode(signature_sha).decode(encoding='utf-8')
|
||
authorization_origin = f'api_key="{self.APIKey}", algorithm="hmac-sha256", headers="host date request-line", signature="{signature_sha_base64}"'
|
||
authorization = base64.b64encode(authorization_origin.encode('utf-8')).decode(encoding='utf-8')
|
||
|
||
# 将请求的鉴权参数组合为字典
|
||
v = {
|
||
"authorization": authorization,
|
||
"date": date,
|
||
"host": self.host
|
||
}
|
||
# 拼接鉴权参数,生成url
|
||
url = self.gpt_url + '?' + urlencode(v)
|
||
# 此处打印出建立连接时候的url,参考本demo的时候可取消上方打印的注释,比对相同参数时生成的url与自己代码生成的url是否一致
|
||
return url
|
||
|
||
|
||
|
||
class SparkRequestInstance():
|
||
def __init__(self):
|
||
XFYUN_APPID, XFYUN_API_SECRET, XFYUN_API_KEY = get_conf('XFYUN_APPID', 'XFYUN_API_SECRET', 'XFYUN_API_KEY')
|
||
if XFYUN_APPID == '00000000' or XFYUN_APPID == '': raise RuntimeError('请配置讯飞星火大模型的XFYUN_APPID, XFYUN_API_KEY, XFYUN_API_SECRET')
|
||
self.appid = XFYUN_APPID
|
||
self.api_secret = XFYUN_API_SECRET
|
||
self.api_key = XFYUN_API_KEY
|
||
self.gpt_url = "ws://spark-api.xf-yun.com/v1.1/chat"
|
||
self.gpt_url_v2 = "ws://spark-api.xf-yun.com/v2.1/chat"
|
||
self.gpt_url_v3 = "ws://spark-api.xf-yun.com/v3.1/chat"
|
||
self.gpt_url_img = "wss://spark-api.cn-huabei-1.xf-yun.com/v2.1/image"
|
||
|
||
self.time_to_yield_event = threading.Event()
|
||
self.time_to_exit_event = threading.Event()
|
||
|
||
self.result_buf = ""
|
||
|
||
def generate(self, inputs, llm_kwargs, history, system_prompt, use_image_api=False):
|
||
llm_kwargs = llm_kwargs
|
||
history = history
|
||
system_prompt = system_prompt
|
||
import _thread as thread
|
||
thread.start_new_thread(self.create_blocking_request, (inputs, llm_kwargs, history, system_prompt, use_image_api))
|
||
while True:
|
||
self.time_to_yield_event.wait(timeout=1)
|
||
if self.time_to_yield_event.is_set():
|
||
yield self.result_buf
|
||
if self.time_to_exit_event.is_set():
|
||
return self.result_buf
|
||
|
||
|
||
def create_blocking_request(self, inputs, llm_kwargs, history, system_prompt, use_image_api):
|
||
if llm_kwargs['llm_model'] == 'sparkv2':
|
||
gpt_url = self.gpt_url_v2
|
||
elif llm_kwargs['llm_model'] == 'sparkv3':
|
||
gpt_url = self.gpt_url_v3
|
||
else:
|
||
gpt_url = self.gpt_url
|
||
file_manifest = []
|
||
if use_image_api and llm_kwargs.get('most_recent_uploaded'):
|
||
if llm_kwargs['most_recent_uploaded'].get('path'):
|
||
file_manifest = get_pictures_list(llm_kwargs['most_recent_uploaded']['path'])
|
||
if len(file_manifest) > 0:
|
||
print('正在使用讯飞图片理解API')
|
||
gpt_url = self.gpt_url_img
|
||
wsParam = Ws_Param(self.appid, self.api_key, self.api_secret, gpt_url)
|
||
websocket.enableTrace(False)
|
||
wsUrl = wsParam.create_url()
|
||
|
||
# 收到websocket连接建立的处理
|
||
def on_open(ws):
|
||
import _thread as thread
|
||
thread.start_new_thread(run, (ws,))
|
||
def run(ws, *args):
|
||
data = json.dumps(gen_params(ws.appid, *ws.all_args, file_manifest))
|
||
ws.send(data)
|
||
|
||
# 收到websocket消息的处理
|
||
def on_message(ws, message):
|
||
data = json.loads(message)
|
||
code = data['header']['code']
|
||
if code != 0:
|
||
print(f'请求错误: {code}, {data}')
|
||
self.result_buf += str(data)
|
||
ws.close()
|
||
self.time_to_exit_event.set()
|
||
else:
|
||
choices = data["payload"]["choices"]
|
||
status = choices["status"]
|
||
content = choices["text"][0]["content"]
|
||
ws.content += content
|
||
self.result_buf += content
|
||
if status == 2:
|
||
ws.close()
|
||
self.time_to_exit_event.set()
|
||
self.time_to_yield_event.set()
|
||
|
||
# 收到websocket错误的处理
|
||
def on_error(ws, error):
|
||
print("error:", error)
|
||
self.time_to_exit_event.set()
|
||
|
||
# 收到websocket关闭的处理
|
||
def on_close(ws, *args):
|
||
self.time_to_exit_event.set()
|
||
|
||
# websocket
|
||
ws = websocket.WebSocketApp(wsUrl, on_message=on_message, on_error=on_error, on_close=on_close, on_open=on_open)
|
||
ws.appid = self.appid
|
||
ws.content = ""
|
||
ws.all_args = (inputs, llm_kwargs, history, system_prompt)
|
||
ws.run_forever(sslopt={"cert_reqs": ssl.CERT_NONE})
|
||
|
||
def generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest):
|
||
conversation_cnt = len(history) // 2
|
||
messages = []
|
||
if file_manifest:
|
||
base64_images = []
|
||
for image_path in file_manifest:
|
||
base64_images.append(encode_image(image_path))
|
||
for img_s in base64_images:
|
||
if img_s not in str(messages):
|
||
messages.append({"role": "user", "content": img_s, "content_type": "image"})
|
||
else:
|
||
messages = [{"role": "system", "content": system_prompt}]
|
||
if conversation_cnt:
|
||
for index in range(0, 2*conversation_cnt, 2):
|
||
what_i_have_asked = {}
|
||
what_i_have_asked["role"] = "user"
|
||
what_i_have_asked["content"] = history[index]
|
||
what_gpt_answer = {}
|
||
what_gpt_answer["role"] = "assistant"
|
||
what_gpt_answer["content"] = history[index+1]
|
||
if what_i_have_asked["content"] != "":
|
||
if what_gpt_answer["content"] == "": continue
|
||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||
messages.append(what_i_have_asked)
|
||
messages.append(what_gpt_answer)
|
||
else:
|
||
messages[-1]['content'] = what_gpt_answer['content']
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = "user"
|
||
what_i_ask_now["content"] = inputs
|
||
messages.append(what_i_ask_now)
|
||
return messages
|
||
|
||
|
||
def gen_params(appid, inputs, llm_kwargs, history, system_prompt, file_manifest):
|
||
"""
|
||
通过appid和用户的提问来生成请参数
|
||
"""
|
||
domains = {
|
||
"spark": "general",
|
||
"sparkv2": "generalv2",
|
||
"sparkv3": "generalv3",
|
||
}
|
||
domains_select = domains[llm_kwargs['llm_model']]
|
||
if file_manifest: domains_select = 'image'
|
||
data = {
|
||
"header": {
|
||
"app_id": appid,
|
||
"uid": "1234"
|
||
},
|
||
"parameter": {
|
||
"chat": {
|
||
"domain": domains_select,
|
||
"temperature": llm_kwargs["temperature"],
|
||
"random_threshold": 0.5,
|
||
"max_tokens": 4096,
|
||
"auditing": "default"
|
||
}
|
||
},
|
||
"payload": {
|
||
"message": {
|
||
"text": generate_message_payload(inputs, llm_kwargs, history, system_prompt, file_manifest)
|
||
}
|
||
}
|
||
}
|
||
return data
|
||
|