310 lines
14 KiB
Python
310 lines
14 KiB
Python
from toolbox import CatchException, report_execption, write_results_to_file
|
||
from toolbox import update_ui, promote_file_to_downloadzone, update_ui_lastest_msg, disable_auto_promotion
|
||
from toolbox import write_history_to_file, get_log_folder
|
||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||
from .crazy_utils import read_and_clean_pdf_text
|
||
from .pdf_fns.parse_pdf import parse_pdf, get_avail_grobid_url
|
||
from colorful import *
|
||
import glob
|
||
import os
|
||
import math
|
||
|
||
@CatchException
|
||
def 批量翻译PDF文档(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||
|
||
disable_auto_promotion(chatbot)
|
||
# 基本信息:功能、贡献者
|
||
chatbot.append([
|
||
"函数插件功能?",
|
||
"批量翻译PDF文档。函数插件贡献者: Binary-Husky"])
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||
try:
|
||
import fitz
|
||
import tiktoken
|
||
except:
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}",
|
||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 清空历史,以免输入溢出
|
||
history = []
|
||
|
||
from .crazy_utils import get_files_from_everything
|
||
success, file_manifest, project_folder = get_files_from_everything(txt, type='.pdf')
|
||
# 检测输入参数,如没有给定输入参数,直接退出
|
||
if not success:
|
||
if txt == "": txt = '空空如也的输入栏'
|
||
|
||
# 如果没找到任何文件
|
||
if len(file_manifest) == 0:
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 开始正式执行任务
|
||
grobid_url = get_avail_grobid_url()
|
||
if grobid_url is not None:
|
||
yield from 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url)
|
||
else:
|
||
yield from update_ui_lastest_msg("GROBID服务不可用,请检查config中的GROBID_URL。作为替代,现在将执行效果稍差的旧版代码。", chatbot, history, delay=3)
|
||
yield from 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|
||
|
||
|
||
def 解析PDF_基于GROBID(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, grobid_url):
|
||
import copy
|
||
import tiktoken
|
||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
||
generated_conclusion_files = []
|
||
generated_html_files = []
|
||
DST_LANG = "中文"
|
||
for index, fp in enumerate(file_manifest):
|
||
chatbot.append(["当前进度:", f"正在连接GROBID服务,请稍候: {grobid_url}\n如果等待时间过长,请修改config中的GROBID_URL,可修改成本地GROBID服务。"]); yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
article_dict = parse_pdf(fp, grobid_url)
|
||
print(article_dict)
|
||
prompt = "以下是一篇学术论文的基本信息:\n"
|
||
# title
|
||
title = article_dict.get('title', '无法获取 title'); prompt += f'title:{title}\n\n'
|
||
# authors
|
||
authors = article_dict.get('authors', '无法获取 authors'); prompt += f'authors:{authors}\n\n'
|
||
# abstract
|
||
abstract = article_dict.get('abstract', '无法获取 abstract'); prompt += f'abstract:{abstract}\n\n'
|
||
# command
|
||
prompt += f"请将题目和摘要翻译为{DST_LANG}。"
|
||
meta = [f'# Title:\n\n', title, f'# Abstract:\n\n', abstract ]
|
||
|
||
# 单线,获取文章meta信息
|
||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=prompt,
|
||
inputs_show_user=prompt,
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot, history=[],
|
||
sys_prompt="You are an academic paper reader。",
|
||
)
|
||
|
||
# 多线,翻译
|
||
inputs_array = []
|
||
inputs_show_user_array = []
|
||
|
||
# get_token_num
|
||
from request_llm.bridge_all import model_info
|
||
enc = model_info[llm_kwargs['llm_model']]['tokenizer']
|
||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||
|
||
def break_down(txt):
|
||
raw_token_num = get_token_num(txt)
|
||
if raw_token_num <= TOKEN_LIMIT_PER_FRAGMENT:
|
||
return [txt]
|
||
else:
|
||
# raw_token_num > TOKEN_LIMIT_PER_FRAGMENT
|
||
# find a smooth token limit to achieve even seperation
|
||
count = int(math.ceil(raw_token_num / TOKEN_LIMIT_PER_FRAGMENT))
|
||
token_limit_smooth = raw_token_num // count + count
|
||
return breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn=get_token_num, limit=token_limit_smooth)
|
||
|
||
for section in article_dict.get('sections'):
|
||
if len(section['text']) == 0: continue
|
||
section_frags = break_down(section['text'])
|
||
for i, fragment in enumerate(section_frags):
|
||
heading = section['heading']
|
||
if len(section_frags) > 1: heading += f' Part-{i+1}'
|
||
inputs_array.append(
|
||
f"你需要翻译{heading}章节,内容如下: \n\n{fragment}"
|
||
)
|
||
inputs_show_user_array.append(
|
||
f"# {heading}\n\n{fragment}"
|
||
)
|
||
|
||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||
inputs_array=inputs_array,
|
||
inputs_show_user_array=inputs_show_user_array,
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history_array=[meta for _ in inputs_array],
|
||
sys_prompt_array=[
|
||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in inputs_array],
|
||
)
|
||
res_path = write_history_to_file(meta + ["# Meta Translation" , paper_meta_info] + gpt_response_collection, file_basename=None, file_fullname=None)
|
||
promote_file_to_downloadzone(res_path, rename_file=os.path.basename(fp)+'.md', chatbot=chatbot)
|
||
generated_conclusion_files.append(res_path)
|
||
|
||
ch = construct_html()
|
||
orig = ""
|
||
trans = ""
|
||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||
for i,k in enumerate(gpt_response_collection_html):
|
||
if i%2==0:
|
||
gpt_response_collection_html[i] = inputs_show_user_array[i//2]
|
||
else:
|
||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||
|
||
final = ["", "", "一、论文概况", "", "Abstract", paper_meta_info, "二、论文翻译", ""]
|
||
final.extend(gpt_response_collection_html)
|
||
for i, k in enumerate(final):
|
||
if i%2==0:
|
||
orig = k
|
||
if i%2==1:
|
||
trans = k
|
||
ch.add_row(a=orig, b=trans)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||
html_file = ch.save_file(create_report_file_name)
|
||
generated_html_files.append(html_file)
|
||
promote_file_to_downloadzone(html_file, rename_file=os.path.basename(html_file), chatbot=chatbot)
|
||
|
||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
|
||
def 解析PDF(file_manifest, project_folder, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||
import copy
|
||
TOKEN_LIMIT_PER_FRAGMENT = 1280
|
||
generated_conclusion_files = []
|
||
generated_html_files = []
|
||
for index, fp in enumerate(file_manifest):
|
||
# 读取PDF文件
|
||
file_content, page_one = read_and_clean_pdf_text(fp)
|
||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||
|
||
# 递归地切割PDF文件
|
||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||
from request_llm.bridge_all import model_info
|
||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||
txt=page_one, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||
|
||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||
|
||
# 单线,获取文章meta信息
|
||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot, history=[],
|
||
sys_prompt="Your job is to collect information from materials。",
|
||
)
|
||
|
||
# 多线,翻译
|
||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||
inputs_array=[
|
||
f"你需要翻译以下内容:\n{frag}" for frag in paper_fragments],
|
||
inputs_show_user_array=[f"\n---\n 原文: \n\n {frag.replace('#', '')} \n---\n 翻译:\n " for frag in paper_fragments],
|
||
llm_kwargs=llm_kwargs,
|
||
chatbot=chatbot,
|
||
history_array=[[paper_meta] for _ in paper_fragments],
|
||
sys_prompt_array=[
|
||
"请你作为一个学术翻译,负责把学术论文准确翻译成中文。注意文章中的每一句话都要翻译。" for _ in paper_fragments],
|
||
# max_workers=5 # OpenAI所允许的最大并行过载
|
||
)
|
||
gpt_response_collection_md = copy.deepcopy(gpt_response_collection)
|
||
# 整理报告的格式
|
||
for i,k in enumerate(gpt_response_collection_md):
|
||
if i%2==0:
|
||
gpt_response_collection_md[i] = f"\n\n---\n\n ## 原文[{i//2}/{len(gpt_response_collection_md)//2}]: \n\n {paper_fragments[i//2].replace('#', '')} \n\n---\n\n ## 翻译[{i//2}/{len(gpt_response_collection_md)//2}]:\n "
|
||
else:
|
||
gpt_response_collection_md[i] = gpt_response_collection_md[i]
|
||
final = ["一、论文概况\n\n---\n\n", paper_meta_info.replace('# ', '### ') + '\n\n---\n\n', "二、论文翻译", ""]
|
||
final.extend(gpt_response_collection_md)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
||
res = write_results_to_file(final, file_name=create_report_file_name)
|
||
|
||
# 更新UI
|
||
generated_conclusion_files.append(f'./gpt_log/{create_report_file_name}')
|
||
chatbot.append((f"{fp}完成了吗?", res))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
# write html
|
||
try:
|
||
ch = construct_html()
|
||
orig = ""
|
||
trans = ""
|
||
gpt_response_collection_html = copy.deepcopy(gpt_response_collection)
|
||
for i,k in enumerate(gpt_response_collection_html):
|
||
if i%2==0:
|
||
gpt_response_collection_html[i] = paper_fragments[i//2].replace('#', '')
|
||
else:
|
||
gpt_response_collection_html[i] = gpt_response_collection_html[i]
|
||
final = ["论文概况", paper_meta_info.replace('# ', '### '), "二、论文翻译", ""]
|
||
final.extend(gpt_response_collection_html)
|
||
for i, k in enumerate(final):
|
||
if i%2==0:
|
||
orig = k
|
||
if i%2==1:
|
||
trans = k
|
||
ch.add_row(a=orig, b=trans)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.html"
|
||
generated_html_files.append(ch.save_file(create_report_file_name))
|
||
except:
|
||
from toolbox import trimmed_format_exc
|
||
print('writing html result failed:', trimmed_format_exc())
|
||
|
||
# 准备文件的下载
|
||
for pdf_path in generated_conclusion_files:
|
||
# 重命名文件
|
||
rename_file = f'翻译-{os.path.basename(pdf_path)}'
|
||
promote_file_to_downloadzone(pdf_path, rename_file=rename_file, chatbot=chatbot)
|
||
for html_path in generated_html_files:
|
||
# 重命名文件
|
||
rename_file = f'翻译-{os.path.basename(html_path)}'
|
||
promote_file_to_downloadzone(html_path, rename_file=rename_file, chatbot=chatbot)
|
||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files + generated_html_files)))
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
|
||
class construct_html():
|
||
def __init__(self) -> None:
|
||
self.css = """
|
||
.row {
|
||
display: flex;
|
||
flex-wrap: wrap;
|
||
}
|
||
|
||
.column {
|
||
flex: 1;
|
||
padding: 10px;
|
||
}
|
||
|
||
.table-header {
|
||
font-weight: bold;
|
||
border-bottom: 1px solid black;
|
||
}
|
||
|
||
.table-row {
|
||
border-bottom: 1px solid lightgray;
|
||
}
|
||
|
||
.table-cell {
|
||
padding: 5px;
|
||
}
|
||
"""
|
||
self.html_string = f'<!DOCTYPE html><head><meta charset="utf-8"><title>翻译结果</title><style>{self.css}</style></head>'
|
||
|
||
|
||
def add_row(self, a, b):
|
||
tmp = """
|
||
<div class="row table-row">
|
||
<div class="column table-cell">REPLACE_A</div>
|
||
<div class="column table-cell">REPLACE_B</div>
|
||
</div>
|
||
"""
|
||
from toolbox import markdown_convertion
|
||
tmp = tmp.replace('REPLACE_A', markdown_convertion(a))
|
||
tmp = tmp.replace('REPLACE_B', markdown_convertion(b))
|
||
self.html_string += tmp
|
||
|
||
|
||
def save_file(self, file_name):
|
||
with open(os.path.join(get_log_folder(), file_name), 'w', encoding='utf8') as f:
|
||
f.write(self.html_string.encode('utf-8', 'ignore').decode())
|
||
return os.path.join(get_log_folder(), file_name)
|