160 lines
6.9 KiB
Python
160 lines
6.9 KiB
Python
import traceback
|
||
|
||
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
||
import time
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
||
# 用户反馈
|
||
chatbot.append([inputs_show_user, ""])
|
||
msg = '正常'
|
||
yield chatbot, [], msg
|
||
executor = ThreadPoolExecutor(max_workers=16)
|
||
mutable = ["", time.time()]
|
||
future = executor.submit(lambda:
|
||
predict_no_ui_long_connection(
|
||
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
||
)
|
||
while True:
|
||
# yield一次以刷新前端页面
|
||
time.sleep(refresh_interval)
|
||
# “喂狗”(看门狗)
|
||
mutable[1] = time.time()
|
||
if future.done():
|
||
break
|
||
chatbot[-1] = [chatbot[-1][0], mutable[0]]
|
||
msg = "正常"
|
||
yield chatbot, [], msg
|
||
return future.result()
|
||
|
||
|
||
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
||
import time
|
||
from concurrent.futures import ThreadPoolExecutor
|
||
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
||
assert len(inputs_array) == len(history_array)
|
||
assert len(inputs_array) == len(sys_prompt_array)
|
||
executor = ThreadPoolExecutor(max_workers=max_workers)
|
||
n_frag = len(inputs_array)
|
||
# 用户反馈
|
||
chatbot.append(["请开始多线程操作。", ""])
|
||
msg = '正常'
|
||
yield chatbot, [], msg
|
||
# 异步原子
|
||
mutable = [["", time.time()] for _ in range(n_frag)]
|
||
|
||
def _req_gpt(index, inputs, history, sys_prompt):
|
||
try:
|
||
gpt_say = predict_no_ui_long_connection(
|
||
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
|
||
)
|
||
except:
|
||
# 收拾残局
|
||
tb_str = '```\n' + traceback.format_exc() + '```'
|
||
gpt_say = f"[Local Message] 线程{index}在执行过程中遭遇问题, Traceback:\n\n{tb_str}\n\n"
|
||
if len(mutable[index][0]) > 0:
|
||
gpt_say += "此线程失败前收到的回答:" + mutable[index][0]
|
||
return gpt_say
|
||
# 异步任务开始
|
||
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(
|
||
range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
||
cnt = 0
|
||
while True:
|
||
# yield一次以刷新前端页面
|
||
time.sleep(refresh_interval)
|
||
cnt += 1
|
||
worker_done = [h.done() for h in futures]
|
||
if all(worker_done):
|
||
executor.shutdown()
|
||
break
|
||
# 更好的UI视觉效果
|
||
observe_win = []
|
||
# 每个线程都要“喂狗”(看门狗)
|
||
for thread_index, _ in enumerate(worker_done):
|
||
mutable[thread_index][1] = time.time()
|
||
# 在前端打印些好玩的东西
|
||
for thread_index, _ in enumerate(worker_done):
|
||
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
||
replace('\n', '').replace('```', '...').replace(
|
||
' ', '.').replace('<br/>', '.....').replace('$', '.')+"`... ]"
|
||
observe_win.append(print_something_really_funny)
|
||
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(
|
||
worker_done, observe_win)])
|
||
chatbot[-1] = [chatbot[-1][0],
|
||
f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt % 10+1))]
|
||
msg = "正常"
|
||
yield chatbot, [], msg
|
||
# 异步任务结束
|
||
gpt_response_collection = []
|
||
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
||
gpt_res = f.result()
|
||
gpt_response_collection.extend([inputs_show_user, gpt_res])
|
||
return gpt_response_collection
|
||
|
||
|
||
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||
if get_token_fn(txt_tocut) <= limit:
|
||
return [txt_tocut]
|
||
else:
|
||
lines = txt_tocut.split('\n')
|
||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||
estimated_line_cut = int(estimated_line_cut)
|
||
for cnt in reversed(range(estimated_line_cut)):
|
||
if must_break_at_empty_line:
|
||
if lines[cnt] != "":
|
||
continue
|
||
print(cnt)
|
||
prev = "\n".join(lines[:cnt])
|
||
post = "\n".join(lines[cnt:])
|
||
if get_token_fn(prev) < limit:
|
||
break
|
||
if cnt == 0:
|
||
print('what the fuck ?')
|
||
raise RuntimeError("存在一行极长的文本!")
|
||
# print(len(post))
|
||
# 列表递归接龙
|
||
result = [prev]
|
||
result.extend(cut(post, must_break_at_empty_line))
|
||
return result
|
||
try:
|
||
return cut(txt, must_break_at_empty_line=True)
|
||
except RuntimeError:
|
||
return cut(txt, must_break_at_empty_line=False)
|
||
|
||
|
||
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
||
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
||
if get_token_fn(txt_tocut) <= limit:
|
||
return [txt_tocut]
|
||
else:
|
||
lines = txt_tocut.split('\n')
|
||
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
||
estimated_line_cut = int(estimated_line_cut)
|
||
cnt = 0
|
||
for cnt in reversed(range(estimated_line_cut)):
|
||
if must_break_at_empty_line:
|
||
if lines[cnt] != "":
|
||
continue
|
||
print(cnt)
|
||
prev = "\n".join(lines[:cnt])
|
||
post = "\n".join(lines[cnt:])
|
||
if get_token_fn(prev) < limit:
|
||
break
|
||
if cnt == 0:
|
||
# print('what the fuck ? 存在一行极长的文本!')
|
||
raise RuntimeError("存在一行极长的文本!")
|
||
# print(len(post))
|
||
# 列表递归接龙
|
||
result = [prev]
|
||
result.extend(cut(post, must_break_at_empty_line))
|
||
return result
|
||
try:
|
||
return cut(txt, must_break_at_empty_line=True)
|
||
except RuntimeError:
|
||
try:
|
||
return cut(txt, must_break_at_empty_line=False)
|
||
except RuntimeError:
|
||
# 这个中文的句号是故意的,作为一个标识而存在
|
||
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
||
return [r.replace('。\n', '.') for r in res]
|