* Update version to 3.74 * Add support for Yi Model API (#1635) * 更新以支持零一万物模型 * 删除newbing * 修改config --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * Refactor function signatures in bridge files * fix qwen api change * rename and ref functions * rename and move some cookie functions * 增加haiku模型,新增endpoint配置说明 (#1626) * haiku added * 新增haiku,新增endpoint配置说明 * Haiku added * 将说明同步至最新Endpoint --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * private_upload目录下进行文件鉴权 (#1596) * private_upload目录下进行文件鉴权 * minor fastapi adjustment * Add logging functionality to enable saving conversation records * waiting to fix username retrieve * support 2rd web path * allow accessing default user dir --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * remove yaml deps * fix favicon * fix abs path auth problem * forget to write a return * add `dashscope` to deps * fix GHSA-v9q9-xj86-953p * 用户名重叠越权访问patch (#1681) * add cohere model api access * cohere + can_multi_thread * fix block user access(fail) * fix fastapi bug * change cohere api endpoint * explain version --------- Co-authored-by: Menghuan1918 <menghuan2003@outlook.com> Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com> Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
310 lines
14 KiB
Python
310 lines
14 KiB
Python
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||
|
||
"""
|
||
该文件中主要包含2个函数
|
||
|
||
不具备多线程能力的函数:
|
||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||
|
||
具备多线程调用能力的函数
|
||
2. predict_no_ui_long_connection:支持多线程
|
||
"""
|
||
import logging
|
||
import os
|
||
import time
|
||
import traceback
|
||
import json
|
||
import requests
|
||
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
|
||
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
|
||
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
|
||
|
||
# config_private.py放自己的秘密如API和代理网址
|
||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
|
||
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
|
||
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')
|
||
|
||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||
|
||
def get_full_error(chunk, stream_response):
|
||
"""
|
||
获取完整的从Openai返回的报错
|
||
"""
|
||
while True:
|
||
try:
|
||
chunk += next(stream_response)
|
||
except:
|
||
break
|
||
return chunk
|
||
|
||
def decode_chunk(chunk):
|
||
# 提前读取一些信息(用于判断异常)
|
||
chunk_decoded = chunk.decode()
|
||
chunkjson = None
|
||
is_last_chunk = False
|
||
need_to_pass = False
|
||
if chunk_decoded.startswith('data:'):
|
||
try:
|
||
chunkjson = json.loads(chunk_decoded[6:])
|
||
except:
|
||
need_to_pass = True
|
||
pass
|
||
elif chunk_decoded.startswith('event:'):
|
||
try:
|
||
event_type = chunk_decoded.split(':')[1].strip()
|
||
if event_type == 'content_block_stop' or event_type == 'message_stop':
|
||
is_last_chunk = True
|
||
elif event_type == 'content_block_start' or event_type == 'message_start':
|
||
need_to_pass = True
|
||
pass
|
||
except:
|
||
need_to_pass = True
|
||
pass
|
||
else:
|
||
need_to_pass = True
|
||
pass
|
||
return need_to_pass, chunkjson, is_last_chunk
|
||
|
||
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||
"""
|
||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||
inputs:
|
||
是本次问询的输入
|
||
sys_prompt:
|
||
系统静默prompt
|
||
llm_kwargs:
|
||
chatGPT的内部调优参数
|
||
history:
|
||
是之前的对话列表
|
||
observe_window = None:
|
||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||
"""
|
||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||
if len(ANTHROPIC_API_KEY) == 0:
|
||
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
|
||
if inputs == "": inputs = "空空如也的输入栏"
|
||
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
|
||
retry = 0
|
||
|
||
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=False
|
||
from .bridge_all import model_info
|
||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||
response = requests.post(endpoint, headers=headers, json=message,
|
||
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||
except requests.exceptions.ReadTimeout as e:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
stream_response = response.iter_lines()
|
||
result = ''
|
||
while True:
|
||
try: chunk = next(stream_response)
|
||
except StopIteration:
|
||
break
|
||
except requests.exceptions.ConnectionError:
|
||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||
if chunk:
|
||
try:
|
||
if need_to_pass:
|
||
pass
|
||
elif is_last_chunk:
|
||
# logging.info(f'[response] {result}')
|
||
break
|
||
else:
|
||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||
result += chunkjson['delta']['text']
|
||
print(chunkjson['delta']['text'], end='')
|
||
if observe_window is not None:
|
||
# 观测窗,把已经获取的数据显示出去
|
||
if len(observe_window) >= 1:
|
||
observe_window[0] += chunkjson['delta']['text']
|
||
# 看门狗,如果超过期限没有喂狗,则终止
|
||
if len(observe_window) >= 2:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("用户取消了程序。")
|
||
except Exception as e:
|
||
chunk = get_full_error(chunk, stream_response)
|
||
chunk_decoded = chunk.decode()
|
||
error_msg = chunk_decoded
|
||
print(error_msg)
|
||
raise RuntimeError("Json解析不合常规")
|
||
|
||
return result
|
||
|
||
def make_media_input(history,inputs,image_paths):
|
||
for image_path in image_paths:
|
||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||
return inputs
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
发送至chatGPT,流式获取输出。
|
||
用于基础的对话功能。
|
||
inputs 是本次问询的输入
|
||
top_p, temperature是chatGPT的内部调优参数
|
||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||
"""
|
||
if inputs == "": inputs = "空空如也的输入栏"
|
||
if len(ANTHROPIC_API_KEY) == 0:
|
||
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||
return
|
||
|
||
if additional_fn is not None:
|
||
from core_functional import handle_core_functionality
|
||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||
|
||
have_recent_file, image_paths = every_image_file_in_path(chatbot)
|
||
if len(image_paths) > 20:
|
||
chatbot.append((inputs, "图片数量超过api上限(20张)"))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
|
||
return
|
||
|
||
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
|
||
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
|
||
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
|
||
chatbot.append((make_media_input(history,inputs, image_paths), ""))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||
else:
|
||
chatbot.append((inputs, ""))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||
|
||
try:
|
||
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
|
||
except RuntimeError as e:
|
||
chatbot[-1] = (inputs, f"您提供的api-key不满足要求,不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
|
||
return
|
||
|
||
history.append(inputs); history.append("")
|
||
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=True
|
||
from .bridge_all import model_info
|
||
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
|
||
response = requests.post(endpoint, headers=headers, json=message,
|
||
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
|
||
except requests.exceptions.ReadTimeout as e:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
stream_response = response.iter_lines()
|
||
gpt_replying_buffer = ""
|
||
|
||
while True:
|
||
try: chunk = next(stream_response)
|
||
except StopIteration:
|
||
break
|
||
except requests.exceptions.ConnectionError:
|
||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
|
||
if chunk:
|
||
try:
|
||
if need_to_pass:
|
||
pass
|
||
elif is_last_chunk:
|
||
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
|
||
# logging.info(f'[response] {gpt_replying_buffer}')
|
||
break
|
||
else:
|
||
if chunkjson and chunkjson['type'] == 'content_block_delta':
|
||
gpt_replying_buffer += chunkjson['delta']['text']
|
||
history[-1] = gpt_replying_buffer
|
||
chatbot[-1] = (history[-2], history[-1])
|
||
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
|
||
|
||
except Exception as e:
|
||
chunk = get_full_error(chunk, stream_response)
|
||
chunk_decoded = chunk.decode()
|
||
error_msg = chunk_decoded
|
||
print(error_msg)
|
||
raise RuntimeError("Json解析不合常规")
|
||
|
||
def multiple_picture_types(image_paths):
|
||
"""
|
||
根据图片类型返回image/jpeg, image/png, image/gif, image/webp,无法判断则返回image/jpeg
|
||
"""
|
||
for image_path in image_paths:
|
||
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
|
||
return 'image/jpeg'
|
||
elif image_path.endswith('.png'):
|
||
return 'image/png'
|
||
elif image_path.endswith('.gif'):
|
||
return 'image/gif'
|
||
elif image_path.endswith('.webp'):
|
||
return 'image/webp'
|
||
return 'image/jpeg'
|
||
|
||
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
|
||
"""
|
||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||
"""
|
||
|
||
conversation_cnt = len(history) // 2
|
||
|
||
messages = []
|
||
|
||
if conversation_cnt:
|
||
for index in range(0, 2*conversation_cnt, 2):
|
||
what_i_have_asked = {}
|
||
what_i_have_asked["role"] = "user"
|
||
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
|
||
what_gpt_answer = {}
|
||
what_gpt_answer["role"] = "assistant"
|
||
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
|
||
if what_i_have_asked["content"][0]["text"] != "":
|
||
if what_i_have_asked["content"][0]["text"] == "": continue
|
||
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
|
||
messages.append(what_i_have_asked)
|
||
messages.append(what_gpt_answer)
|
||
else:
|
||
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
|
||
|
||
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = "user"
|
||
what_i_ask_now["content"] = []
|
||
for image_path in image_paths:
|
||
what_i_ask_now["content"].append({
|
||
"type": "image",
|
||
"source": {
|
||
"type": "base64",
|
||
"media_type": multiple_picture_types(image_paths),
|
||
"data": encode_image(image_path),
|
||
}
|
||
})
|
||
what_i_ask_now["content"].append({"type": "text", "text": inputs})
|
||
else:
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = "user"
|
||
what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
|
||
messages.append(what_i_ask_now)
|
||
# 开始整理headers与message
|
||
headers = {
|
||
'x-api-key': ANTHROPIC_API_KEY,
|
||
'anthropic-version': '2023-06-01',
|
||
'content-type': 'application/json'
|
||
}
|
||
payload = {
|
||
'model': llm_kwargs['llm_model'],
|
||
'max_tokens': 4096,
|
||
'messages': messages,
|
||
'temperature': llm_kwargs['temperature'],
|
||
'stream': True,
|
||
'system': system_prompt
|
||
}
|
||
return headers, payload
|