chatgpt_academic/request_llms/bridge_claude.py
binary-husky bdd46c5dd1
Version 3.74: Merge latest updates on dev branch (frontier) (#1621)
* Update version to 3.74

* Add support for Yi Model API (#1635)

* 更新以支持零一万物模型

* 删除newbing

* 修改config

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* Refactor function signatures in bridge files

* fix qwen api change

* rename and ref functions

* rename and move some cookie functions

* 增加haiku模型,新增endpoint配置说明 (#1626)

* haiku added

* 新增haiku,新增endpoint配置说明

* Haiku added

* 将说明同步至最新Endpoint

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* private_upload目录下进行文件鉴权 (#1596)

* private_upload目录下进行文件鉴权

* minor fastapi adjustment

* Add logging functionality to enable saving
conversation records

* waiting to fix username retrieve

* support 2rd web path

* allow accessing default user dir

---------

Co-authored-by: binary-husky <qingxu.fu@outlook.com>

* remove yaml deps

* fix favicon

* fix abs path auth problem

* forget to write a return

* add `dashscope` to deps

* fix GHSA-v9q9-xj86-953p

* 用户名重叠越权访问patch (#1681)

* add cohere model api access

* cohere + can_multi_thread

* fix block user access(fail)

* fix fastapi bug

* change cohere api endpoint

* explain version

---------

Co-authored-by: Menghuan1918 <menghuan2003@outlook.com>
Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com>
Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
2024-04-08 11:49:30 +08:00

310 lines
14 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
"""
该文件中主要包含2个函数
不具备多线程能力的函数:
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
具备多线程调用能力的函数
2. predict_no_ui_long_connection支持多线程
"""
import logging
import os
import time
import traceback
import json
import requests
from toolbox import get_conf, update_ui, trimmed_format_exc, encode_image, every_image_file_in_path, log_chat
picture_system_prompt = "\n当回复图像时,必须说明正在回复哪张图像。所有图像仅在最后一个问题中提供,即使它们在历史记录中被提及。请使用'这是第X张图像:'的格式来指明您正在描述的是哪张图像。"
Claude_3_Models = ["claude-3-haiku-20240307", "claude-3-sonnet-20240229", "claude-3-opus-20240229"]
# config_private.py放自己的秘密如API和代理网址
# 读取时首先看是否存在私密的config_private配置文件不受git管控如果有则覆盖原config文件
from toolbox import get_conf, update_ui, trimmed_format_exc, ProxyNetworkActivate
proxies, TIMEOUT_SECONDS, MAX_RETRY, ANTHROPIC_API_KEY = \
get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY', 'ANTHROPIC_API_KEY')
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
def get_full_error(chunk, stream_response):
"""
获取完整的从Openai返回的报错
"""
while True:
try:
chunk += next(stream_response)
except:
break
return chunk
def decode_chunk(chunk):
# 提前读取一些信息(用于判断异常)
chunk_decoded = chunk.decode()
chunkjson = None
is_last_chunk = False
need_to_pass = False
if chunk_decoded.startswith('data:'):
try:
chunkjson = json.loads(chunk_decoded[6:])
except:
need_to_pass = True
pass
elif chunk_decoded.startswith('event:'):
try:
event_type = chunk_decoded.split(':')[1].strip()
if event_type == 'content_block_stop' or event_type == 'message_stop':
is_last_chunk = True
elif event_type == 'content_block_start' or event_type == 'message_start':
need_to_pass = True
pass
except:
need_to_pass = True
pass
else:
need_to_pass = True
pass
return need_to_pass, chunkjson, is_last_chunk
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
"""
发送至chatGPT等待回复一次性完成不显示中间过程。但内部用stream的方法避免中途网线被掐。
inputs
是本次问询的输入
sys_prompt:
系统静默prompt
llm_kwargs
chatGPT的内部调优参数
history
是之前的对话列表
observe_window = None
用于负责跨越线程传递已经输出的部分大部分时候仅仅为了fancy的视觉效果留空即可。observe_window[0]观测窗。observe_window[1]:看门狗
"""
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
if len(ANTHROPIC_API_KEY) == 0:
raise RuntimeError("没有设置ANTHROPIC_API_KEY选项")
if inputs == "": inputs = "空空如也的输入栏"
headers, message = generate_payload(inputs, llm_kwargs, history, sys_prompt, image_paths=None)
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=False
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, json=message,
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
result = ''
while True:
try: chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
if chunk:
try:
if need_to_pass:
pass
elif is_last_chunk:
# logging.info(f'[response] {result}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
result += chunkjson['delta']['text']
print(chunkjson['delta']['text'], end='')
if observe_window is not None:
# 观测窗,把已经获取的数据显示出去
if len(observe_window) >= 1:
observe_window[0] += chunkjson['delta']['text']
# 看门狗,如果超过期限没有喂狗,则终止
if len(observe_window) >= 2:
if (time.time()-observe_window[1]) > watch_dog_patience:
raise RuntimeError("用户取消了程序。")
except Exception as e:
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
raise RuntimeError("Json解析不合常规")
return result
def make_media_input(history,inputs,image_paths):
for image_path in image_paths:
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
return inputs
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
"""
发送至chatGPT流式获取输出。
用于基础的对话功能。
inputs 是本次问询的输入
top_p, temperature是chatGPT的内部调优参数
history 是之前的对话列表注意无论是inputs还是history内容太长了都会触发token数量溢出的错误
chatbot 为WebUI中显示的对话列表修改它然后yeild出去可以直接修改对话界面内容
additional_fn代表点击的哪个按钮按钮见functional.py
"""
if inputs == "": inputs = "空空如也的输入栏"
if len(ANTHROPIC_API_KEY) == 0:
chatbot.append((inputs, "没有设置ANTHROPIC_API_KEY"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
return
if additional_fn is not None:
from core_functional import handle_core_functionality
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
have_recent_file, image_paths = every_image_file_in_path(chatbot)
if len(image_paths) > 20:
chatbot.append((inputs, "图片数量超过api上限(20张)"))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应")
return
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and have_recent_file:
if inputs == "" or inputs == "空空如也的输入栏": inputs = "请描述给出的图片"
system_prompt += picture_system_prompt # 由于没有单独的参数保存包含图片的历史,所以只能通过提示词对第几张图片进行定位
chatbot.append((make_media_input(history,inputs, image_paths), ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
else:
chatbot.append((inputs, ""))
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
try:
headers, message = generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths)
except RuntimeError as e:
chatbot[-1] = (inputs, f"您提供的api-key不满足要求不包含任何可用于{llm_kwargs['llm_model']}的api-key。您可能选择了错误的模型或请求源。")
yield from update_ui(chatbot=chatbot, history=history, msg="api-key不满足要求") # 刷新界面
return
history.append(inputs); history.append("")
retry = 0
while True:
try:
# make a POST request to the API endpoint, stream=True
from .bridge_all import model_info
endpoint = model_info[llm_kwargs['llm_model']]['endpoint']
response = requests.post(endpoint, headers=headers, json=message,
proxies=proxies, stream=True, timeout=TIMEOUT_SECONDS);break
except requests.exceptions.ReadTimeout as e:
retry += 1
traceback.print_exc()
if retry > MAX_RETRY: raise TimeoutError
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
stream_response = response.iter_lines()
gpt_replying_buffer = ""
while True:
try: chunk = next(stream_response)
except StopIteration:
break
except requests.exceptions.ConnectionError:
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
need_to_pass, chunkjson, is_last_chunk = decode_chunk(chunk)
if chunk:
try:
if need_to_pass:
pass
elif is_last_chunk:
log_chat(llm_model=llm_kwargs["llm_model"], input_str=inputs, output_str=gpt_replying_buffer)
# logging.info(f'[response] {gpt_replying_buffer}')
break
else:
if chunkjson and chunkjson['type'] == 'content_block_delta':
gpt_replying_buffer += chunkjson['delta']['text']
history[-1] = gpt_replying_buffer
chatbot[-1] = (history[-2], history[-1])
yield from update_ui(chatbot=chatbot, history=history, msg='正常') # 刷新界面
except Exception as e:
chunk = get_full_error(chunk, stream_response)
chunk_decoded = chunk.decode()
error_msg = chunk_decoded
print(error_msg)
raise RuntimeError("Json解析不合常规")
def multiple_picture_types(image_paths):
"""
根据图片类型返回image/jpeg, image/png, image/gif, image/webp无法判断则返回image/jpeg
"""
for image_path in image_paths:
if image_path.endswith('.jpeg') or image_path.endswith('.jpg'):
return 'image/jpeg'
elif image_path.endswith('.png'):
return 'image/png'
elif image_path.endswith('.gif'):
return 'image/gif'
elif image_path.endswith('.webp'):
return 'image/webp'
return 'image/jpeg'
def generate_payload(inputs, llm_kwargs, history, system_prompt, image_paths):
"""
整合所有信息选择LLM模型生成http请求为发送请求做准备
"""
conversation_cnt = len(history) // 2
messages = []
if conversation_cnt:
for index in range(0, 2*conversation_cnt, 2):
what_i_have_asked = {}
what_i_have_asked["role"] = "user"
what_i_have_asked["content"] = [{"type": "text", "text": history[index]}]
what_gpt_answer = {}
what_gpt_answer["role"] = "assistant"
what_gpt_answer["content"] = [{"type": "text", "text": history[index+1]}]
if what_i_have_asked["content"][0]["text"] != "":
if what_i_have_asked["content"][0]["text"] == "": continue
if what_i_have_asked["content"][0]["text"] == timeout_bot_msg: continue
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
else:
messages[-1]['content'][0]['text'] = what_gpt_answer['content'][0]['text']
if any([llm_kwargs['llm_model'] == model for model in Claude_3_Models]) and image_paths:
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = []
for image_path in image_paths:
what_i_ask_now["content"].append({
"type": "image",
"source": {
"type": "base64",
"media_type": multiple_picture_types(image_paths),
"data": encode_image(image_path),
}
})
what_i_ask_now["content"].append({"type": "text", "text": inputs})
else:
what_i_ask_now = {}
what_i_ask_now["role"] = "user"
what_i_ask_now["content"] = [{"type": "text", "text": inputs}]
messages.append(what_i_ask_now)
# 开始整理headers与message
headers = {
'x-api-key': ANTHROPIC_API_KEY,
'anthropic-version': '2023-06-01',
'content-type': 'application/json'
}
payload = {
'model': llm_kwargs['llm_model'],
'max_tokens': 4096,
'messages': messages,
'temperature': llm_kwargs['temperature'],
'stream': True,
'system': system_prompt
}
return headers, payload