* Update version to 3.74 * Add support for Yi Model API (#1635) * 更新以支持零一万物模型 * 删除newbing * 修改config --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * Refactor function signatures in bridge files * fix qwen api change * rename and ref functions * rename and move some cookie functions * 增加haiku模型,新增endpoint配置说明 (#1626) * haiku added * 新增haiku,新增endpoint配置说明 * Haiku added * 将说明同步至最新Endpoint --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * private_upload目录下进行文件鉴权 (#1596) * private_upload目录下进行文件鉴权 * minor fastapi adjustment * Add logging functionality to enable saving conversation records * waiting to fix username retrieve * support 2rd web path * allow accessing default user dir --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * remove yaml deps * fix favicon * fix abs path auth problem * forget to write a return * add `dashscope` to deps * fix GHSA-v9q9-xj86-953p * 用户名重叠越权访问patch (#1681) * add cohere model api access * cohere + can_multi_thread * fix block user access(fail) * fix fastapi bug * change cohere api endpoint * explain version --------- Co-authored-by: Menghuan1918 <menghuan2003@outlook.com> Co-authored-by: Skyzayre <120616113+Skyzayre@users.noreply.github.com> Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com>
121 lines
5.6 KiB
Python
121 lines
5.6 KiB
Python
# encoding: utf-8
|
||
# @Time : 2023/12/21
|
||
# @Author : Spike
|
||
# @Descr :
|
||
import json
|
||
import re
|
||
import os
|
||
import time
|
||
from request_llms.com_google import GoogleChatInit
|
||
from toolbox import ChatBotWithCookies
|
||
from toolbox import get_conf, update_ui, update_ui_lastest_msg, have_any_recent_upload_image_files, trimmed_format_exc
|
||
|
||
proxies, TIMEOUT_SECONDS, MAX_RETRY = get_conf('proxies', 'TIMEOUT_SECONDS', 'MAX_RETRY')
|
||
timeout_bot_msg = '[Local Message] Request timeout. Network error. Please check proxy settings in config.py.' + \
|
||
'网络错误,检查代理服务器是否可用,以及代理设置的格式是否正确,格式须是[协议]://[地址]:[端口],缺一不可。'
|
||
|
||
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None,
|
||
console_slience=False):
|
||
# 检查API_KEY
|
||
if get_conf("GEMINI_API_KEY") == "":
|
||
raise ValueError(f"请配置 GEMINI_API_KEY。")
|
||
|
||
genai = GoogleChatInit(llm_kwargs)
|
||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||
gpt_replying_buffer = ''
|
||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, sys_prompt)
|
||
for response in stream_response:
|
||
results = response.decode()
|
||
match = re.search(r'"text":\s*"((?:[^"\\]|\\.)*)"', results, flags=re.DOTALL)
|
||
error_match = re.search(r'\"message\":\s*\"(.*?)\"', results, flags=re.DOTALL)
|
||
if match:
|
||
try:
|
||
paraphrase = json.loads('{"text": "%s"}' % match.group(1))
|
||
except:
|
||
raise ValueError(f"解析GEMINI消息出错。")
|
||
buffer = paraphrase['text']
|
||
gpt_replying_buffer += buffer
|
||
if len(observe_window) >= 1:
|
||
observe_window[0] = gpt_replying_buffer
|
||
if len(observe_window) >= 2:
|
||
if (time.time() - observe_window[1]) > watch_dog_patience: raise RuntimeError("程序终止。")
|
||
if error_match:
|
||
raise RuntimeError(f'{gpt_replying_buffer} 对话错误')
|
||
return gpt_replying_buffer
|
||
|
||
|
||
def predict(inputs:str, llm_kwargs:dict, plugin_kwargs:dict, chatbot:ChatBotWithCookies,
|
||
history:list=[], system_prompt:str='', stream:bool=True, additional_fn:str=None):
|
||
# 检查API_KEY
|
||
if get_conf("GEMINI_API_KEY") == "":
|
||
yield from update_ui_lastest_msg(f"请配置 GEMINI_API_KEY。", chatbot=chatbot, history=history, delay=0)
|
||
return
|
||
|
||
# 适配润色区域
|
||
if additional_fn is not None:
|
||
from core_functional import handle_core_functionality
|
||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||
|
||
if "vision" in llm_kwargs["llm_model"]:
|
||
have_recent_file, image_paths = have_any_recent_upload_image_files(chatbot)
|
||
if not have_recent_file:
|
||
chatbot.append((inputs, "没有检测到任何近期上传的图像文件,请上传jpg格式的图片,此外,请注意拓展名需要小写"))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待图片") # 刷新界面
|
||
return
|
||
def make_media_input(inputs, image_paths):
|
||
for image_path in image_paths:
|
||
inputs = inputs + f'<br/><br/><div align="center"><img src="file={os.path.abspath(image_path)}"></div>'
|
||
return inputs
|
||
if have_recent_file:
|
||
inputs = make_media_input(inputs, image_paths)
|
||
|
||
chatbot.append((inputs, ""))
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
genai = GoogleChatInit(llm_kwargs)
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
stream_response = genai.generate_chat(inputs, llm_kwargs, history, system_prompt)
|
||
break
|
||
except Exception as e:
|
||
retry += 1
|
||
chatbot[-1] = ((chatbot[-1][0], trimmed_format_exc()))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="请求失败") # 刷新界面
|
||
return
|
||
gpt_replying_buffer = ""
|
||
gpt_security_policy = ""
|
||
history.extend([inputs, ''])
|
||
for response in stream_response:
|
||
results = response.decode("utf-8") # 被这个解码给耍了。。
|
||
gpt_security_policy += results
|
||
match = re.search(r'"text":\s*"((?:[^"\\]|\\.)*)"', results, flags=re.DOTALL)
|
||
error_match = re.search(r'\"message\":\s*\"(.*)\"', results, flags=re.DOTALL)
|
||
if match:
|
||
try:
|
||
paraphrase = json.loads('{"text": "%s"}' % match.group(1))
|
||
except:
|
||
raise ValueError(f"解析GEMINI消息出错。")
|
||
gpt_replying_buffer += paraphrase['text'] # 使用 json 解析库进行处理
|
||
chatbot[-1] = (inputs, gpt_replying_buffer)
|
||
history[-1] = gpt_replying_buffer
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
if error_match:
|
||
history = history[-2] # 错误的不纳入对话
|
||
chatbot[-1] = (inputs, gpt_replying_buffer + f"对话错误,请查看message\n\n```\n{error_match.group(1)}\n```")
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
raise RuntimeError('对话错误')
|
||
if not gpt_replying_buffer:
|
||
history = history[-2] # 错误的不纳入对话
|
||
chatbot[-1] = (inputs, gpt_replying_buffer + f"触发了Google的安全访问策略,没有回答\n\n```\n{gpt_security_policy}\n```")
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
|
||
|
||
|
||
if __name__ == '__main__':
|
||
import sys
|
||
llm_kwargs = {'llm_model': 'gemini-pro'}
|
||
result = predict('Write long a story about a magic backpack.', llm_kwargs, llm_kwargs, [])
|
||
for i in result:
|
||
print(i)
|