238 lines
10 KiB
Python
238 lines
10 KiB
Python
"""
|
||
该文件中主要包含三个函数
|
||
|
||
不具备多线程能力的函数:
|
||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||
|
||
具备多线程调用能力的函数
|
||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||
"""
|
||
|
||
import logging
|
||
import traceback
|
||
import importlib
|
||
import openai
|
||
import time
|
||
import requests
|
||
import json
|
||
|
||
# 读取config.py文件中关于AZURE OPENAI API的信息
|
||
from toolbox import get_conf, update_ui, clip_history, trimmed_format_exc
|
||
TIMEOUT_SECONDS, MAX_RETRY, AZURE_ENGINE, AZURE_ENDPOINT, AZURE_API_VERSION, AZURE_API_KEY = \
|
||
get_conf('TIMEOUT_SECONDS', 'MAX_RETRY',"AZURE_ENGINE","AZURE_ENDPOINT", "AZURE_API_VERSION", "AZURE_API_KEY")
|
||
|
||
|
||
def get_full_error(chunk, stream_response):
|
||
"""
|
||
获取完整的从Openai返回的报错
|
||
"""
|
||
while True:
|
||
try:
|
||
chunk += next(stream_response)
|
||
except:
|
||
break
|
||
return chunk
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
发送至azure openai api,流式获取输出。
|
||
用于基础的对话功能。
|
||
inputs 是本次问询的输入
|
||
top_p, temperature是chatGPT的内部调优参数
|
||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||
"""
|
||
|
||
if additional_fn is not None:
|
||
import core_functional
|
||
importlib.reload(core_functional) # 热更新prompt
|
||
core_functional = core_functional.get_core_functions()
|
||
if "PreProcess" in core_functional[additional_fn]: inputs = core_functional[additional_fn]["PreProcess"](inputs) # 获取预处理函数(如果有的话)
|
||
inputs = core_functional[additional_fn]["Prefix"] + inputs + core_functional[additional_fn]["Suffix"]
|
||
|
||
raw_input = inputs
|
||
logging.info(f'[raw_input] {raw_input}')
|
||
chatbot.append((inputs, ""))
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="等待响应") # 刷新界面
|
||
|
||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream)
|
||
|
||
history.append(inputs); history.append("")
|
||
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
openai.api_type = "azure"
|
||
openai.api_version = AZURE_API_VERSION
|
||
openai.api_base = AZURE_ENDPOINT
|
||
openai.api_key = AZURE_API_KEY
|
||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||
except openai.error.AuthenticationError:
|
||
tb_str = '```\n' + trimmed_format_exc() + '```'
|
||
chatbot[-1] = [chatbot[-1][0], tb_str]
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="openai返回错误") # 刷新界面
|
||
return
|
||
except:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
|
||
gpt_replying_buffer = ""
|
||
is_head_of_the_stream = True
|
||
if stream:
|
||
|
||
stream_response = response
|
||
|
||
while True:
|
||
try:
|
||
chunk = next(stream_response)
|
||
|
||
except StopIteration:
|
||
from toolbox import regular_txt_to_markdown; tb_str = '```\n' + trimmed_format_exc() + '```'
|
||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] 远程返回错误: \n\n{tb_str} \n\n{regular_txt_to_markdown(chunk)}")
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="远程返回错误:" + chunk) # 刷新界面
|
||
return
|
||
|
||
if is_head_of_the_stream and (r'"object":"error"' not in chunk):
|
||
# 数据流的第一帧不携带content
|
||
is_head_of_the_stream = False; continue
|
||
|
||
if chunk:
|
||
#print(chunk)
|
||
try:
|
||
if "delta" in chunk["choices"][0]:
|
||
if chunk["choices"][0]["finish_reason"] == "stop":
|
||
logging.info(f'[response] {gpt_replying_buffer}')
|
||
break
|
||
status_text = f"finish_reason: {chunk['choices'][0]['finish_reason']}"
|
||
gpt_replying_buffer = gpt_replying_buffer + chunk["choices"][0]["delta"]["content"]
|
||
|
||
history[-1] = gpt_replying_buffer
|
||
chatbot[-1] = (history[-2], history[-1])
|
||
yield from update_ui(chatbot=chatbot, history=history, msg=status_text) # 刷新界面
|
||
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="Json解析不合常规") # 刷新界面
|
||
chunk = get_full_error(chunk, stream_response)
|
||
|
||
error_msg = chunk
|
||
yield from update_ui(chatbot=chatbot, history=history, msg="Json异常" + error_msg) # 刷新界面
|
||
return
|
||
|
||
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=None, console_slience=False):
|
||
"""
|
||
发送至AZURE OPENAI API,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免中途网线被掐。
|
||
inputs:
|
||
是本次问询的输入
|
||
sys_prompt:
|
||
系统静默prompt
|
||
llm_kwargs:
|
||
chatGPT的内部调优参数
|
||
history:
|
||
是之前的对话列表
|
||
observe_window = None:
|
||
用于负责跨越线程传递已经输出的部分,大部分时候仅仅为了fancy的视觉效果,留空即可。observe_window[0]:观测窗。observe_window[1]:看门狗
|
||
"""
|
||
watch_dog_patience = 5 # 看门狗的耐心, 设置5秒即可
|
||
payload = generate_azure_payload(inputs, llm_kwargs, history, system_prompt=sys_prompt, stream=True)
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
openai.api_type = "azure"
|
||
openai.api_version = AZURE_API_VERSION
|
||
openai.api_base = AZURE_ENDPOINT
|
||
openai.api_key = AZURE_API_KEY
|
||
response = openai.ChatCompletion.create(timeout=TIMEOUT_SECONDS, **payload);break
|
||
except:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
|
||
stream_response = response
|
||
result = ''
|
||
while True:
|
||
try: chunk = next(stream_response)
|
||
except StopIteration:
|
||
break
|
||
except:
|
||
chunk = next(stream_response) # 失败了,重试一次?再失败就没办法了。
|
||
if len(chunk)==0: continue
|
||
|
||
json_data = json.loads(str(chunk))['choices'][0]
|
||
delta = json_data["delta"]
|
||
if len(delta) == 0:
|
||
break
|
||
if "role" in delta:
|
||
continue
|
||
if "content" in delta:
|
||
result += delta["content"]
|
||
if not console_slience: print(delta["content"], end='')
|
||
if observe_window is not None:
|
||
# 观测窗,把已经获取的数据显示出去
|
||
if len(observe_window) >= 1: observe_window[0] += delta["content"]
|
||
# 看门狗,如果超过期限没有喂狗,则终止
|
||
if len(observe_window) >= 2000:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("用户取消了程序。")
|
||
else:
|
||
raise RuntimeError("意外Json结构:"+delta)
|
||
if json_data['finish_reason'] == 'content_filter':
|
||
raise RuntimeError("由于提问含不合规内容被Azure过滤。")
|
||
if json_data['finish_reason'] == 'length':
|
||
raise ConnectionAbortedError("正常结束,但显示Token不足,导致输出不完整,请削减单次输入的文本量。")
|
||
return result
|
||
|
||
|
||
def generate_azure_payload(inputs, llm_kwargs, history, system_prompt, stream):
|
||
"""
|
||
整合所有信息,选择LLM模型,生成 azure openai api请求,为发送请求做准备
|
||
"""
|
||
|
||
conversation_cnt = len(history) // 2
|
||
|
||
messages = [{"role": "system", "content": system_prompt}]
|
||
if conversation_cnt:
|
||
for index in range(0, 2*conversation_cnt, 2):
|
||
what_i_have_asked = {}
|
||
what_i_have_asked["role"] = "user"
|
||
what_i_have_asked["content"] = history[index]
|
||
what_gpt_answer = {}
|
||
what_gpt_answer["role"] = "assistant"
|
||
what_gpt_answer["content"] = history[index+1]
|
||
if what_i_have_asked["content"] != "":
|
||
if what_gpt_answer["content"] == "": continue
|
||
messages.append(what_i_have_asked)
|
||
messages.append(what_gpt_answer)
|
||
else:
|
||
messages[-1]['content'] = what_gpt_answer['content']
|
||
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = "user"
|
||
what_i_ask_now["content"] = inputs
|
||
messages.append(what_i_ask_now)
|
||
|
||
payload = {
|
||
"model": llm_kwargs['llm_model'],
|
||
"messages": messages,
|
||
"temperature": llm_kwargs['temperature'], # 1.0,
|
||
"top_p": llm_kwargs['top_p'], # 1.0,
|
||
"n": 1,
|
||
"stream": stream,
|
||
"presence_penalty": 0,
|
||
"frequency_penalty": 0,
|
||
"engine": AZURE_ENGINE
|
||
}
|
||
try:
|
||
print(f" {llm_kwargs['llm_model']} : {conversation_cnt} : {inputs[:100]} ..........")
|
||
except:
|
||
print('输入中可能存在乱码。')
|
||
return payload
|
||
|
||
|