* Zhipu sdk update 适配最新的智谱SDK,支持GLM4v (#1502) * 适配 google gemini 优化为从用户input中提取文件 * 适配最新的智谱SDK、支持glm-4v * requirements.txt fix * pending history check --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * Update "生成多种Mermaid图表" plugin: Separate out the file reading function (#1520) * Update crazy_functional.py with new functionality deal with PDF * Update crazy_functional.py and Mermaid.py for plugin_kwargs * Update crazy_functional.py with new chart type: mind map * Update SELECT_PROMPT and i_say_show_user messages * Update ArgsReminder message in get_crazy_functions() function * Update with read md file and update PROMPTS * Return the PROMPTS as the test found that the initial version worked best * Update Mermaid chart generation function * version 3.71 * 解决issues #1510 * Remove unnecessary text from sys_prompt in 解析历史输入 function * Remove sys_prompt message in 解析历史输入 function * Update bridge_all.py: supports gpt-4-turbo-preview (#1517) * Update bridge_all.py: supports gpt-4-turbo-preview supports gpt-4-turbo-preview * Update bridge_all.py --------- Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com> * Update config.py: supports gpt-4-turbo-preview (#1516) * Update config.py: supports gpt-4-turbo-preview supports gpt-4-turbo-preview * Update config.py --------- Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com> * Refactor 解析历史输入 function to handle file input * Update Mermaid chart generation functionality * rename files and functions --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com> Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com> * 接入mathpix ocr功能 (#1468) * Update Latex输出PDF结果.py 借助mathpix实现了PDF翻译中文并重新编译PDF * Update config.py add mathpix appid & appkey * Add 'PDF翻译中文并重新编译PDF' feature to plugins. --------- Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com> * fix zhipuai * check picture * remove glm-4 due to bug * 修改config * 检查MATHPIX_APPID * Remove unnecessary code and update function_plugins dictionary * capture non-standard token overflow * bug fix #1524 * change mermaid style * 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 (#1530) * 支持mermaid 滚动放大缩小重置,鼠标滚动和拖拽 * 微调未果 先stage一下 * update --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> Co-authored-by: binary-husky <96192199+binary-husky@users.noreply.github.com> * ver 3.72 * change live2d * save the status of ``clear btn` in cookie * 前端选择保持 * js ui bug fix * reset btn bug fix * update live2d tips * fix missing get_token_num method * fix live2d toggle switch * fix persistent custom btn with cookie * fix zhipuai feedback with core functionality * Refactor button update and clean up functions * tailing space removal * Fix missing MATHPIX_APPID and MATHPIX_APPKEY configuration * Prompt fix、脑图提示词优化 (#1537) * 适配 google gemini 优化为从用户input中提取文件 * 脑图提示词优化 * Fix missing MATHPIX_APPID and MATHPIX_APPKEY configuration --------- Co-authored-by: binary-husky <qingxu.fu@outlook.com> * 优化“PDF翻译中文并重新编译PDF”插件 (#1602) * Add gemini_endpoint to API_URL_REDIRECT (#1560) * Add gemini_endpoint to API_URL_REDIRECT * Update gemini-pro and gemini-pro-vision model_info endpoints * Update to support new claude models (#1606) * Add anthropic library and update claude models * 更新bridge_claude.py文件,添加了对图片输入的支持。修复了一些bug。 * 添加Claude_3_Models变量以限制图片数量 * Refactor code to improve readability and maintainability * minor claude bug fix * more flexible one-api support * reformat config * fix one-api new access bug * dummy * compat non-standard api * version 3.73 --------- Co-authored-by: XIao <46100050+Kilig947@users.noreply.github.com> Co-authored-by: Menghuan1918 <menghuan2003@outlook.com> Co-authored-by: hongyi-zhao <hongyi.zhao@gmail.com> Co-authored-by: Hao Ma <893017927@qq.com> Co-authored-by: zeyuan huang <599012428@qq.com>
208 lines
9.2 KiB
Python
208 lines
9.2 KiB
Python
|
||
from transformers import AutoModel, AutoTokenizer
|
||
import time
|
||
import os
|
||
import json
|
||
import threading
|
||
import importlib
|
||
from toolbox import update_ui, get_conf
|
||
from multiprocessing import Process, Pipe
|
||
|
||
load_message = "ChatGLMFT尚未加载,加载需要一段时间。注意,取决于`config.py`的配置,ChatGLMFT消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||
|
||
def string_to_options(arguments):
|
||
import argparse
|
||
import shlex
|
||
# Create an argparse.ArgumentParser instance
|
||
parser = argparse.ArgumentParser()
|
||
# Add command-line arguments
|
||
parser.add_argument("--llm_to_learn", type=str, help="LLM model to learn", default="gpt-3.5-turbo")
|
||
parser.add_argument("--prompt_prefix", type=str, help="Prompt prefix", default='')
|
||
parser.add_argument("--system_prompt", type=str, help="System prompt", default='')
|
||
parser.add_argument("--batch", type=int, help="System prompt", default=50)
|
||
# Parse the arguments
|
||
args = parser.parse_args(shlex.split(arguments))
|
||
return args
|
||
|
||
|
||
#################################################################################
|
||
class GetGLMFTHandle(Process):
|
||
def __init__(self):
|
||
super().__init__(daemon=True)
|
||
self.parent, self.child = Pipe()
|
||
self.chatglmft_model = None
|
||
self.chatglmft_tokenizer = None
|
||
self.info = ""
|
||
self.success = True
|
||
self.check_dependency()
|
||
self.start()
|
||
self.threadLock = threading.Lock()
|
||
|
||
def check_dependency(self):
|
||
try:
|
||
import sentencepiece
|
||
self.info = "依赖检测通过"
|
||
self.success = True
|
||
except:
|
||
self.info = "缺少ChatGLMFT的依赖,如果要使用ChatGLMFT,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_chatglm.txt`安装ChatGLM的依赖。"
|
||
self.success = False
|
||
|
||
def ready(self):
|
||
return self.chatglmft_model is not None
|
||
|
||
def run(self):
|
||
# 子进程执行
|
||
# 第一次运行,加载参数
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
if self.chatglmft_model is None:
|
||
from transformers import AutoConfig
|
||
import torch
|
||
# conf = 'request_llms/current_ptune_model.json'
|
||
# if not os.path.exists(conf): raise RuntimeError('找不到微调模型信息')
|
||
# with open(conf, 'r', encoding='utf8') as f:
|
||
# model_args = json.loads(f.read())
|
||
CHATGLM_PTUNING_CHECKPOINT = get_conf('CHATGLM_PTUNING_CHECKPOINT')
|
||
assert os.path.exists(CHATGLM_PTUNING_CHECKPOINT), "找不到微调模型检查点"
|
||
conf = os.path.join(CHATGLM_PTUNING_CHECKPOINT, "config.json")
|
||
with open(conf, 'r', encoding='utf8') as f:
|
||
model_args = json.loads(f.read())
|
||
if 'model_name_or_path' not in model_args:
|
||
model_args['model_name_or_path'] = model_args['_name_or_path']
|
||
self.chatglmft_tokenizer = AutoTokenizer.from_pretrained(
|
||
model_args['model_name_or_path'], trust_remote_code=True)
|
||
config = AutoConfig.from_pretrained(
|
||
model_args['model_name_or_path'], trust_remote_code=True)
|
||
|
||
config.pre_seq_len = model_args['pre_seq_len']
|
||
config.prefix_projection = model_args['prefix_projection']
|
||
|
||
print(f"Loading prefix_encoder weight from {CHATGLM_PTUNING_CHECKPOINT}")
|
||
model = AutoModel.from_pretrained(model_args['model_name_or_path'], config=config, trust_remote_code=True)
|
||
prefix_state_dict = torch.load(os.path.join(CHATGLM_PTUNING_CHECKPOINT, "pytorch_model.bin"))
|
||
new_prefix_state_dict = {}
|
||
for k, v in prefix_state_dict.items():
|
||
if k.startswith("transformer.prefix_encoder."):
|
||
new_prefix_state_dict[k[len("transformer.prefix_encoder."):]] = v
|
||
model.transformer.prefix_encoder.load_state_dict(new_prefix_state_dict)
|
||
|
||
if model_args['quantization_bit'] is not None and model_args['quantization_bit'] != 0:
|
||
print(f"Quantized to {model_args['quantization_bit']} bit")
|
||
model = model.quantize(model_args['quantization_bit'])
|
||
model = model.cuda()
|
||
if model_args['pre_seq_len'] is not None:
|
||
# P-tuning v2
|
||
model.transformer.prefix_encoder.float()
|
||
self.chatglmft_model = model.eval()
|
||
|
||
break
|
||
else:
|
||
break
|
||
except Exception as e:
|
||
retry += 1
|
||
if retry > 3:
|
||
self.child.send('[Local Message] Call ChatGLMFT fail 不能正常加载ChatGLMFT的参数。')
|
||
raise RuntimeError("不能正常加载ChatGLMFT的参数!")
|
||
|
||
while True:
|
||
# 进入任务等待状态
|
||
kwargs = self.child.recv()
|
||
# 收到消息,开始请求
|
||
try:
|
||
for response, history in self.chatglmft_model.stream_chat(self.chatglmft_tokenizer, **kwargs):
|
||
self.child.send(response)
|
||
# # 中途接收可能的终止指令(如果有的话)
|
||
# if self.child.poll():
|
||
# command = self.child.recv()
|
||
# if command == '[Terminate]': break
|
||
except:
|
||
from toolbox import trimmed_format_exc
|
||
self.child.send('[Local Message] Call ChatGLMFT fail.' + '\n```\n' + trimmed_format_exc() + '\n```\n')
|
||
# 请求处理结束,开始下一个循环
|
||
self.child.send('[Finish]')
|
||
|
||
def stream_chat(self, **kwargs):
|
||
# 主进程执行
|
||
self.threadLock.acquire()
|
||
self.parent.send(kwargs)
|
||
while True:
|
||
res = self.parent.recv()
|
||
if res != '[Finish]':
|
||
yield res
|
||
else:
|
||
break
|
||
self.threadLock.release()
|
||
|
||
global glmft_handle
|
||
glmft_handle = None
|
||
#################################################################################
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||
"""
|
||
多线程方法
|
||
函数的说明请见 request_llms/bridge_all.py
|
||
"""
|
||
global glmft_handle
|
||
if glmft_handle is None:
|
||
glmft_handle = GetGLMFTHandle()
|
||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + glmft_handle.info
|
||
if not glmft_handle.success:
|
||
error = glmft_handle.info
|
||
glmft_handle = None
|
||
raise RuntimeError(error)
|
||
|
||
# chatglmft 没有 sys_prompt 接口,因此把prompt加入 history
|
||
history_feedin = []
|
||
history_feedin.append(["What can I do?", sys_prompt])
|
||
for i in range(len(history)//2):
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||
response = ""
|
||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
if len(observe_window) >= 1: observe_window[0] = response
|
||
if len(observe_window) >= 2:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("程序终止。")
|
||
return response
|
||
|
||
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
单线程方法
|
||
函数的说明请见 request_llms/bridge_all.py
|
||
"""
|
||
chatbot.append((inputs, ""))
|
||
|
||
global glmft_handle
|
||
if glmft_handle is None:
|
||
glmft_handle = GetGLMFTHandle()
|
||
chatbot[-1] = (inputs, load_message + "\n\n" + glmft_handle.info)
|
||
yield from update_ui(chatbot=chatbot, history=[])
|
||
if not glmft_handle.success:
|
||
glmft_handle = None
|
||
return
|
||
|
||
if additional_fn is not None:
|
||
from core_functional import handle_core_functionality
|
||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||
|
||
# 处理历史信息
|
||
history_feedin = []
|
||
history_feedin.append(["What can I do?", system_prompt] )
|
||
for i in range(len(history)//2):
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
# 开始接收chatglmft的回复
|
||
response = "[Local Message] 等待ChatGLMFT响应中 ..."
|
||
for response in glmft_handle.stream_chat(query=inputs, history=history_feedin, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
chatbot[-1] = (inputs, response)
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
|
||
# 总结输出
|
||
if response == "[Local Message] 等待ChatGLMFT响应中 ...":
|
||
response = "[Local Message] ChatGLMFT响应异常 ..."
|
||
history.extend([inputs, response])
|
||
yield from update_ui(chatbot=chatbot, history=history)
|