176 lines
7.6 KiB
Python
176 lines
7.6 KiB
Python
|
||
from transformers import AutoModel, AutoTokenizer
|
||
import time
|
||
import threading
|
||
import importlib
|
||
from toolbox import update_ui, get_conf
|
||
from multiprocessing import Process, Pipe
|
||
|
||
load_message = "jittorllms尚未加载,加载需要一段时间。注意,请避免混用多种jittor模型,否则可能导致显存溢出而造成卡顿,取决于`config.py`的配置,jittorllms消耗大量的内存(CPU)或显存(GPU),也许会导致低配计算机卡死 ……"
|
||
|
||
#################################################################################
|
||
class GetGLMHandle(Process):
|
||
def __init__(self):
|
||
super().__init__(daemon=True)
|
||
self.parent, self.child = Pipe()
|
||
self.jittorllms_model = None
|
||
self.info = ""
|
||
self.local_history = []
|
||
self.success = True
|
||
self.check_dependency()
|
||
self.start()
|
||
self.threadLock = threading.Lock()
|
||
|
||
def check_dependency(self):
|
||
try:
|
||
import pandas
|
||
self.info = "依赖检测通过"
|
||
self.success = True
|
||
except:
|
||
from toolbox import trimmed_format_exc
|
||
self.info = r"缺少jittorllms的依赖,如果要使用jittorllms,除了基础的pip依赖以外,您还需要运行`pip install -r request_llms/requirements_jittorllms.txt -i https://pypi.jittor.org/simple -I`"+\
|
||
r"和`git clone https://gitlink.org.cn/jittor/JittorLLMs.git --depth 1 request_llms/jittorllms`两个指令来安装jittorllms的依赖(在项目根目录运行这两个指令)。" +\
|
||
r"警告:安装jittorllms依赖后将完全破坏现有的pytorch环境,建议使用docker环境!" + trimmed_format_exc()
|
||
self.success = False
|
||
|
||
def ready(self):
|
||
return self.jittorllms_model is not None
|
||
|
||
def run(self):
|
||
# 子进程执行
|
||
# 第一次运行,加载参数
|
||
def validate_path():
|
||
import os, sys
|
||
dir_name = os.path.dirname(__file__)
|
||
env = os.environ.get("PATH", "")
|
||
os.environ["PATH"] = env.replace('/cuda/bin', '/x/bin')
|
||
root_dir_assume = os.path.abspath(os.path.dirname(__file__) + '/..')
|
||
os.chdir(root_dir_assume + '/request_llms/jittorllms')
|
||
sys.path.append(root_dir_assume + '/request_llms/jittorllms')
|
||
validate_path() # validate path so you can run from base directory
|
||
|
||
def load_model():
|
||
import types
|
||
try:
|
||
if self.jittorllms_model is None:
|
||
device, = get_conf('LOCAL_MODEL_DEVICE')
|
||
from .jittorllms.models import get_model
|
||
# availabel_models = ["chatglm", "pangualpha", "llama", "chatrwkv"]
|
||
args_dict = {'model': 'pangualpha'}
|
||
print('self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))')
|
||
self.jittorllms_model = get_model(types.SimpleNamespace(**args_dict))
|
||
print('done get model')
|
||
except:
|
||
self.child.send('[Local Message] Call jittorllms fail 不能正常加载jittorllms的参数。')
|
||
raise RuntimeError("不能正常加载jittorllms的参数!")
|
||
print('load_model')
|
||
load_model()
|
||
|
||
# 进入任务等待状态
|
||
print('进入任务等待状态')
|
||
while True:
|
||
# 进入任务等待状态
|
||
kwargs = self.child.recv()
|
||
query = kwargs['query']
|
||
history = kwargs['history']
|
||
# 是否重置
|
||
if len(self.local_history) > 0 and len(history)==0:
|
||
print('触发重置')
|
||
self.jittorllms_model.reset()
|
||
self.local_history.append(query)
|
||
|
||
print('收到消息,开始请求')
|
||
try:
|
||
for response in self.jittorllms_model.stream_chat(query, history):
|
||
print(response)
|
||
self.child.send(response)
|
||
except:
|
||
from toolbox import trimmed_format_exc
|
||
print(trimmed_format_exc())
|
||
self.child.send('[Local Message] Call jittorllms fail.')
|
||
# 请求处理结束,开始下一个循环
|
||
self.child.send('[Finish]')
|
||
|
||
def stream_chat(self, **kwargs):
|
||
# 主进程执行
|
||
self.threadLock.acquire()
|
||
self.parent.send(kwargs)
|
||
while True:
|
||
res = self.parent.recv()
|
||
if res != '[Finish]':
|
||
yield res
|
||
else:
|
||
break
|
||
self.threadLock.release()
|
||
|
||
global pangu_glm_handle
|
||
pangu_glm_handle = None
|
||
#################################################################################
|
||
def predict_no_ui_long_connection(inputs, llm_kwargs, history=[], sys_prompt="", observe_window=[], console_slience=False):
|
||
"""
|
||
多线程方法
|
||
函数的说明请见 request_llms/bridge_all.py
|
||
"""
|
||
global pangu_glm_handle
|
||
if pangu_glm_handle is None:
|
||
pangu_glm_handle = GetGLMHandle()
|
||
if len(observe_window) >= 1: observe_window[0] = load_message + "\n\n" + pangu_glm_handle.info
|
||
if not pangu_glm_handle.success:
|
||
error = pangu_glm_handle.info
|
||
pangu_glm_handle = None
|
||
raise RuntimeError(error)
|
||
|
||
# jittorllms 没有 sys_prompt 接口,因此把prompt加入 history
|
||
history_feedin = []
|
||
for i in range(len(history)//2):
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
watch_dog_patience = 5 # 看门狗 (watchdog) 的耐心, 设置5秒即可
|
||
response = ""
|
||
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=sys_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
print(response)
|
||
if len(observe_window) >= 1: observe_window[0] = response
|
||
if len(observe_window) >= 2:
|
||
if (time.time()-observe_window[1]) > watch_dog_patience:
|
||
raise RuntimeError("程序终止。")
|
||
return response
|
||
|
||
|
||
|
||
def predict(inputs, llm_kwargs, plugin_kwargs, chatbot, history=[], system_prompt='', stream = True, additional_fn=None):
|
||
"""
|
||
单线程方法
|
||
函数的说明请见 request_llms/bridge_all.py
|
||
"""
|
||
chatbot.append((inputs, ""))
|
||
|
||
global pangu_glm_handle
|
||
if pangu_glm_handle is None:
|
||
pangu_glm_handle = GetGLMHandle()
|
||
chatbot[-1] = (inputs, load_message + "\n\n" + pangu_glm_handle.info)
|
||
yield from update_ui(chatbot=chatbot, history=[])
|
||
if not pangu_glm_handle.success:
|
||
pangu_glm_handle = None
|
||
return
|
||
|
||
if additional_fn is not None:
|
||
from core_functional import handle_core_functionality
|
||
inputs, history = handle_core_functionality(additional_fn, inputs, history, chatbot)
|
||
|
||
# 处理历史信息
|
||
history_feedin = []
|
||
for i in range(len(history)//2):
|
||
history_feedin.append([history[2*i], history[2*i+1]] )
|
||
|
||
# 开始接收jittorllms的回复
|
||
response = "[Local Message]: 等待jittorllms响应中 ..."
|
||
for response in pangu_glm_handle.stream_chat(query=inputs, history=history_feedin, system_prompt=system_prompt, max_length=llm_kwargs['max_length'], top_p=llm_kwargs['top_p'], temperature=llm_kwargs['temperature']):
|
||
chatbot[-1] = (inputs, response)
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
|
||
# 总结输出
|
||
if response == "[Local Message]: 等待jittorllms响应中 ...":
|
||
response = "[Local Message]: jittorllms响应异常 ..."
|
||
history.extend([inputs, response])
|
||
yield from update_ui(chatbot=chatbot, history=history)
|