115 lines
6.4 KiB
Python
115 lines
6.4 KiB
Python
from toolbox import update_ui
|
||
from toolbox import CatchException, report_execption
|
||
from .crazy_utils import read_and_clean_pdf_text
|
||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||
fast_debug = False
|
||
|
||
|
||
def 解析PDF(file_name, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt):
|
||
import tiktoken
|
||
print('begin analysis on:', file_name)
|
||
|
||
############################## <第 0 步,切割PDF> ##################################
|
||
# 递归地切割PDF文件,每一块(尽量是完整的一个section,比如introduction,experiment等,必要时再进行切割)
|
||
# 的长度必须小于 2500 个 Token
|
||
file_content, page_one = read_and_clean_pdf_text(file_name) # (尝试)按照章节切割PDF
|
||
file_content = file_content.encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||
page_one = str(page_one).encode('utf-8', 'ignore').decode() # avoid reading non-utf8 chars
|
||
|
||
TOKEN_LIMIT_PER_FRAGMENT = 2500
|
||
|
||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||
from request_llm.bridge_all import model_info
|
||
enc = model_info["gpt-3.5-turbo"]['tokenizer']
|
||
def get_token_num(txt): return len(enc.encode(txt, disallowed_special=()))
|
||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||
# 为了更好的效果,我们剥离Introduction之后的部分(如果有)
|
||
paper_meta = page_one_fragments[0].split('introduction')[0].split('Introduction')[0].split('INTRODUCTION')[0]
|
||
|
||
############################## <第 1 步,从摘要中提取高价值信息,放到history中> ##################################
|
||
final_results = []
|
||
final_results.append(paper_meta)
|
||
|
||
############################## <第 2 步,迭代地历遍整个文章,提取精炼信息> ##################################
|
||
i_say_show_user = f'首先你在英文语境下通读整篇论文。'; gpt_say = "[Local Message] 收到。" # 用户提示
|
||
chatbot.append([i_say_show_user, gpt_say]); yield from update_ui(chatbot=chatbot, history=[]) # 更新UI
|
||
|
||
iteration_results = []
|
||
last_iteration_result = paper_meta # 初始值是摘要
|
||
MAX_WORD_TOTAL = 4096
|
||
n_fragment = len(paper_fragments)
|
||
if n_fragment >= 20: print('文章极长,不能达到预期效果')
|
||
for i in range(n_fragment):
|
||
NUM_OF_WORD = MAX_WORD_TOTAL // n_fragment
|
||
i_say = f"Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i]}"
|
||
i_say_show_user = f"[{i+1}/{n_fragment}] Read this section, recapitulate the content of this section with less than {NUM_OF_WORD} words: {paper_fragments[i][:200]}"
|
||
gpt_say = yield from request_gpt_model_in_new_thread_with_ui_alive(i_say, i_say_show_user, # i_say=真正给chatgpt的提问, i_say_show_user=给用户看的提问
|
||
llm_kwargs, chatbot,
|
||
history=["The main idea of the previous section is?", last_iteration_result], # 迭代上一次的结果
|
||
sys_prompt="Extract the main idea of this section." # 提示
|
||
)
|
||
iteration_results.append(gpt_say)
|
||
last_iteration_result = gpt_say
|
||
|
||
############################## <第 3 步,整理history> ##################################
|
||
final_results.extend(iteration_results)
|
||
final_results.append(f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。')
|
||
# 接下来两句话只显示在界面上,不起实际作用
|
||
i_say_show_user = f'接下来,你是一名专业的学术教授,利用以上信息,使用中文回答我的问题。'; gpt_say = "[Local Message] 收到。"
|
||
chatbot.append([i_say_show_user, gpt_say])
|
||
|
||
############################## <第 4 步,设置一个token上限,防止回答时Token溢出> ##################################
|
||
from .crazy_utils import input_clipping
|
||
_, final_results = input_clipping("", final_results, max_token_limit=3200)
|
||
yield from update_ui(chatbot=chatbot, history=final_results) # 注意这里的历史记录被替代了
|
||
|
||
|
||
@CatchException
|
||
def 理解PDF文档内容标准文件输入(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt, web_port):
|
||
import glob, os
|
||
|
||
# 基本信息:功能、贡献者
|
||
chatbot.append([
|
||
"函数插件功能?",
|
||
"理解PDF论文内容,并且将结合上下文内容,进行学术解答。函数插件贡献者: Hanzoe, binary-husky"])
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
|
||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||
try:
|
||
import fitz
|
||
except:
|
||
report_execption(chatbot, history,
|
||
a = f"解析项目: {txt}",
|
||
b = f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf```。")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 清空历史,以免输入溢出
|
||
history = []
|
||
|
||
# 检测输入参数,如没有给定输入参数,直接退出
|
||
if os.path.exists(txt):
|
||
project_folder = txt
|
||
else:
|
||
if txt == "":
|
||
txt = '空空如也的输入栏'
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
|
||
# 搜索需要处理的文件清单
|
||
file_manifest = [f for f in glob.glob(f'{project_folder}/**/*.pdf', recursive=True)]
|
||
# 如果没找到任何文件
|
||
if len(file_manifest) == 0:
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history) # 刷新界面
|
||
return
|
||
txt = file_manifest[0]
|
||
# 开始正式执行任务
|
||
yield from 解析PDF(txt, llm_kwargs, plugin_kwargs, chatbot, history, system_prompt)
|