139 lines
6.2 KiB
Python
139 lines
6.2 KiB
Python
|
|
|
|
|
|
def request_gpt_model_in_new_thread_with_ui_alive(inputs, inputs_show_user, top_p, temperature, chatbot, history, sys_prompt, refresh_interval=0.2):
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
|
# 用户反馈
|
|
chatbot.append([inputs_show_user, ""]); msg = '正常'
|
|
yield chatbot, [], msg
|
|
executor = ThreadPoolExecutor(max_workers=16)
|
|
mutable = ["", time.time()]
|
|
future = executor.submit(lambda:
|
|
predict_no_ui_long_connection(inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable)
|
|
)
|
|
while True:
|
|
# yield一次以刷新前端页面
|
|
time.sleep(refresh_interval)
|
|
# “喂狗”(看门狗)
|
|
mutable[1] = time.time()
|
|
if future.done(): break
|
|
chatbot[-1] = [chatbot[-1][0], mutable[0]]; msg = "正常"
|
|
yield chatbot, [], msg
|
|
return future.result()
|
|
|
|
|
|
|
|
|
|
def request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(inputs_array, inputs_show_user_array, top_p, temperature, chatbot, history_array, sys_prompt_array, refresh_interval=0.2, max_workers=10, scroller_max_len=30):
|
|
import time
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from request_llm.bridge_chatgpt import predict_no_ui_long_connection
|
|
assert len(inputs_array) == len(history_array)
|
|
assert len(inputs_array) == len(sys_prompt_array)
|
|
executor = ThreadPoolExecutor(max_workers=max_workers)
|
|
n_frag = len(inputs_array)
|
|
# 用户反馈
|
|
chatbot.append(["请开始多线程操作。", ""]); msg = '正常'
|
|
yield chatbot, [], msg
|
|
# 异步原子
|
|
mutable = [["", time.time()] for _ in range(n_frag)]
|
|
def _req_gpt(index, inputs, history, sys_prompt):
|
|
gpt_say = predict_no_ui_long_connection(
|
|
inputs=inputs, top_p=top_p, temperature=temperature, history=history, sys_prompt=sys_prompt, observe_window=mutable[index]
|
|
)
|
|
return gpt_say
|
|
# 异步任务开始
|
|
futures = [executor.submit(_req_gpt, index, inputs, history, sys_prompt) for index, inputs, history, sys_prompt in zip(range(len(inputs_array)), inputs_array, history_array, sys_prompt_array)]
|
|
cnt = 0
|
|
while True:
|
|
# yield一次以刷新前端页面
|
|
time.sleep(refresh_interval); cnt += 1
|
|
worker_done = [h.done() for h in futures]
|
|
if all(worker_done): executor.shutdown(); break
|
|
# 更好的UI视觉效果
|
|
observe_win = []
|
|
# 每个线程都要“喂狗”(看门狗)
|
|
for thread_index, _ in enumerate(worker_done): mutable[thread_index][1] = time.time()
|
|
# 在前端打印些好玩的东西
|
|
for thread_index, _ in enumerate(worker_done):
|
|
print_something_really_funny = "[ ...`"+mutable[thread_index][0][-scroller_max_len:].\
|
|
replace('\n','').replace('```','...').replace(' ','.').replace('<br/>','.....').replace('$','.')+"`... ]"
|
|
observe_win.append(print_something_really_funny)
|
|
stat_str = ''.join([f'执行中: {obs}\n\n' if not done else '已完成\n\n' for done, obs in zip(worker_done, observe_win)])
|
|
chatbot[-1] = [chatbot[-1][0], f'多线程操作已经开始,完成情况: \n\n{stat_str}' + ''.join(['.']*(cnt%10+1))]; msg = "正常"
|
|
yield chatbot, [], msg
|
|
# 异步任务结束
|
|
gpt_response_collection = []
|
|
for inputs_show_user, f in zip(inputs_show_user_array, futures):
|
|
gpt_res = f.result()
|
|
gpt_response_collection.extend([inputs_show_user, gpt_res])
|
|
return gpt_response_collection
|
|
|
|
|
|
|
|
|
|
def breakdown_txt_to_satisfy_token_limit(txt, get_token_fn, limit):
|
|
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
|
if get_token_fn(txt_tocut) <= limit:
|
|
return [txt_tocut]
|
|
else:
|
|
lines = txt_tocut.split('\n')
|
|
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
|
estimated_line_cut = int(estimated_line_cut)
|
|
for cnt in reversed(range(estimated_line_cut)):
|
|
if must_break_at_empty_line:
|
|
if lines[cnt] != "": continue
|
|
print(cnt)
|
|
prev = "\n".join(lines[:cnt])
|
|
post = "\n".join(lines[cnt:])
|
|
if get_token_fn(prev) < limit: break
|
|
if cnt == 0:
|
|
print('what the fuck ?')
|
|
raise RuntimeError("存在一行极长的文本!")
|
|
# print(len(post))
|
|
# 列表递归接龙
|
|
result = [prev]
|
|
result.extend(cut(post, must_break_at_empty_line))
|
|
return result
|
|
try:
|
|
return cut(txt, must_break_at_empty_line=True)
|
|
except RuntimeError:
|
|
return cut(txt, must_break_at_empty_line=False)
|
|
|
|
def breakdown_txt_to_satisfy_token_limit_for_pdf(txt, get_token_fn, limit):
|
|
def cut(txt_tocut, must_break_at_empty_line): # 递归
|
|
if get_token_fn(txt_tocut) <= limit:
|
|
return [txt_tocut]
|
|
else:
|
|
lines = txt_tocut.split('\n')
|
|
estimated_line_cut = limit / get_token_fn(txt_tocut) * len(lines)
|
|
estimated_line_cut = int(estimated_line_cut)
|
|
cnt = 0
|
|
for cnt in reversed(range(estimated_line_cut)):
|
|
if must_break_at_empty_line:
|
|
if lines[cnt] != "": continue
|
|
print(cnt)
|
|
prev = "\n".join(lines[:cnt])
|
|
post = "\n".join(lines[cnt:])
|
|
if get_token_fn(prev) < limit: break
|
|
if cnt == 0:
|
|
# print('what the fuck ? 存在一行极长的文本!')
|
|
raise RuntimeError("存在一行极长的文本!")
|
|
# print(len(post))
|
|
# 列表递归接龙
|
|
result = [prev]
|
|
result.extend(cut(post, must_break_at_empty_line))
|
|
return result
|
|
try:
|
|
return cut(txt, must_break_at_empty_line=True)
|
|
except RuntimeError:
|
|
try:
|
|
return cut(txt, must_break_at_empty_line=False)
|
|
except RuntimeError:
|
|
# 这个中文的句号是故意的,作为一个标识而存在
|
|
res = cut(txt.replace('.', '。\n'), must_break_at_empty_line=False)
|
|
return [r.replace('。\n', '.') for r in res]
|
|
|