206 lines
9.2 KiB
Python
206 lines
9.2 KiB
Python
from toolbox import CatchException, report_execption, write_results_to_file
|
||
from toolbox import update_ui
|
||
from .crazy_utils import request_gpt_model_in_new_thread_with_ui_alive
|
||
from .crazy_utils import request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency
|
||
|
||
|
||
def read_and_clean_pdf_text(fp):
|
||
"""
|
||
**输入参数说明**
|
||
- `fp`:需要读取和清理文本的pdf文件路径
|
||
|
||
**输出参数说明**
|
||
- `meta_txt`:清理后的文本内容字符串
|
||
- `page_one_meta`:第一页清理后的文本内容列表
|
||
|
||
**函数功能**
|
||
读取pdf文件并清理其中的文本内容,清理规则包括:
|
||
- 提取所有块元的文本信息,并合并为一个字符串
|
||
- 去除短块(字符数小于100)并替换为回车符
|
||
- 清理多余的空行
|
||
- 合并小写字母开头的段落块并替换为空格
|
||
- 清除重复的换行
|
||
- 将每个换行符替换为两个换行符,使每个段落之间有两个换行符分隔
|
||
"""
|
||
import fitz
|
||
import re
|
||
import numpy as np
|
||
# file_content = ""
|
||
with fitz.open(fp) as doc:
|
||
meta_txt = []
|
||
meta_font = []
|
||
for index, page in enumerate(doc):
|
||
# file_content += page.get_text()
|
||
text_areas = page.get_text("dict") # 获取页面上的文本信息
|
||
|
||
# 块元提取 for each word segment with in line for each line cross-line words for each block
|
||
meta_txt.extend([" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||
'- ', '') for t in text_areas['blocks'] if 'lines' in t])
|
||
meta_font.extend([np.mean([np.mean([wtf['size'] for wtf in l['spans']])
|
||
for l in t['lines']]) for t in text_areas['blocks'] if 'lines' in t])
|
||
if index == 0:
|
||
page_one_meta = [" ".join(["".join([wtf['text'] for wtf in l['spans']]) for l in t['lines']]).replace(
|
||
'- ', '') for t in text_areas['blocks'] if 'lines' in t]
|
||
|
||
def 把字符太少的块清除为回车(meta_txt):
|
||
for index, block_txt in enumerate(meta_txt):
|
||
if len(block_txt) < 100:
|
||
meta_txt[index] = '\n'
|
||
return meta_txt
|
||
meta_txt = 把字符太少的块清除为回车(meta_txt)
|
||
|
||
def 清理多余的空行(meta_txt):
|
||
for index in reversed(range(1, len(meta_txt))):
|
||
if meta_txt[index] == '\n' and meta_txt[index-1] == '\n':
|
||
meta_txt.pop(index)
|
||
return meta_txt
|
||
meta_txt = 清理多余的空行(meta_txt)
|
||
|
||
def 合并小写开头的段落块(meta_txt):
|
||
def starts_with_lowercase_word(s):
|
||
pattern = r"^[a-z]+"
|
||
match = re.match(pattern, s)
|
||
if match:
|
||
return True
|
||
else:
|
||
return False
|
||
for _ in range(100):
|
||
for index, block_txt in enumerate(meta_txt):
|
||
if starts_with_lowercase_word(block_txt):
|
||
if meta_txt[index-1] != '\n':
|
||
meta_txt[index-1] += ' '
|
||
else:
|
||
meta_txt[index-1] = ''
|
||
meta_txt[index-1] += meta_txt[index]
|
||
meta_txt[index] = '\n'
|
||
return meta_txt
|
||
meta_txt = 合并小写开头的段落块(meta_txt)
|
||
meta_txt = 清理多余的空行(meta_txt)
|
||
|
||
meta_txt = '\n'.join(meta_txt)
|
||
# 清除重复的换行
|
||
for _ in range(5):
|
||
meta_txt = meta_txt.replace('\n\n', '\n')
|
||
|
||
# 换行 -> 双换行
|
||
meta_txt = meta_txt.replace('\n', '\n\n')
|
||
|
||
return meta_txt, page_one_meta
|
||
|
||
|
||
@CatchException
|
||
def 批量翻译PDF文档(txt, top_p, temperature, chatbot, history, sys_prompt, WEB_PORT):
|
||
import glob
|
||
import os
|
||
|
||
# 基本信息:功能、贡献者
|
||
chatbot.append([
|
||
"函数插件功能?",
|
||
"批量总结PDF文档。函数插件贡献者: Binary-Husky(二进制哈士奇)"])
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
|
||
# 尝试导入依赖,如果缺少依赖,则给出安装建议
|
||
try:
|
||
import fitz
|
||
import tiktoken
|
||
except:
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}",
|
||
b=f"导入软件依赖失败。使用该模块需要额外依赖,安装方法```pip install --upgrade pymupdf tiktoken```。")
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
return
|
||
|
||
# 清空历史,以免输入溢出
|
||
history = []
|
||
|
||
# 检测输入参数,如没有给定输入参数,直接退出
|
||
if os.path.exists(txt):
|
||
project_folder = txt
|
||
else:
|
||
if txt == "":
|
||
txt = '空空如也的输入栏'
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}", b=f"找不到本地项目或无权访问: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
return
|
||
|
||
# 搜索需要处理的文件清单
|
||
file_manifest = [f for f in glob.glob(
|
||
f'{project_folder}/**/*.pdf', recursive=True)]
|
||
|
||
# 如果没找到任何文件
|
||
if len(file_manifest) == 0:
|
||
report_execption(chatbot, history,
|
||
a=f"解析项目: {txt}", b=f"找不到任何.tex或.pdf文件: {txt}")
|
||
yield from update_ui(chatbot=chatbot, history=history)
|
||
return
|
||
|
||
# 开始正式执行任务
|
||
yield from 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt)
|
||
|
||
|
||
def 解析PDF(file_manifest, project_folder, top_p, temperature, chatbot, history, sys_prompt):
|
||
import os
|
||
import tiktoken
|
||
TOKEN_LIMIT_PER_FRAGMENT = 1600
|
||
generated_conclusion_files = []
|
||
for index, fp in enumerate(file_manifest):
|
||
# 读取PDF文件
|
||
file_content, page_one = read_and_clean_pdf_text(fp)
|
||
# 递归地切割PDF文件
|
||
from .crazy_utils import breakdown_txt_to_satisfy_token_limit_for_pdf
|
||
from toolbox import get_conf
|
||
enc = tiktoken.encoding_for_model(*get_conf('LLM_MODEL'))
|
||
def get_token_num(txt): return len(enc.encode(txt))
|
||
# 分解文本
|
||
paper_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||
txt=file_content, get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT)
|
||
page_one_fragments = breakdown_txt_to_satisfy_token_limit_for_pdf(
|
||
txt=str(page_one), get_token_fn=get_token_num, limit=TOKEN_LIMIT_PER_FRAGMENT//4)
|
||
# 为了更好的效果,我们剥离Introduction之后的部分
|
||
paper_meta = page_one_fragments[0].split('introduction')[0].split(
|
||
'Introduction')[0].split('INTRODUCTION')[0]
|
||
# 单线,获取文章meta信息
|
||
paper_meta_info = yield from request_gpt_model_in_new_thread_with_ui_alive(
|
||
inputs=f"以下是一篇学术论文的基础信息,请从中提取出“标题”、“收录会议或期刊”、“作者”、“摘要”、“编号”、“作者邮箱”这六个部分。请用markdown格式输出,最后用中文翻译摘要部分。请提取:{paper_meta}",
|
||
inputs_show_user=f"请从{fp}中提取出“标题”、“收录会议或期刊”等基本信息。",
|
||
top_p=top_p, temperature=temperature,
|
||
chatbot=chatbot, history=[],
|
||
sys_prompt="Your job is to collect information from materials。",
|
||
)
|
||
# 多线,翻译
|
||
gpt_response_collection = yield from request_gpt_model_multi_threads_with_very_awesome_ui_and_high_efficiency(
|
||
inputs_array=[
|
||
f"以下是你需要翻译的文章段落:\n{frag}" for frag in paper_fragments],
|
||
inputs_show_user_array=[f"" for _ in paper_fragments],
|
||
top_p=top_p, temperature=temperature,
|
||
chatbot=chatbot,
|
||
history_array=[[paper_meta] for _ in paper_fragments],
|
||
sys_prompt_array=[
|
||
"请你作为一个学术翻译,把整个段落翻译成中文,要求语言简洁,禁止重复输出原文。" for _ in paper_fragments],
|
||
max_workers=16 # OpenAI所允许的最大并行过载
|
||
)
|
||
|
||
final = ["", paper_meta_info + '\n\n---\n\n---\n\n---\n\n']
|
||
final.extend(gpt_response_collection)
|
||
create_report_file_name = f"{os.path.basename(fp)}.trans.md"
|
||
res = write_results_to_file(final, file_name=create_report_file_name)
|
||
generated_conclusion_files.append(
|
||
f'./gpt_log/{create_report_file_name}')
|
||
chatbot.append((f"{fp}完成了吗?", res))
|
||
msg = "完成"
|
||
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg)
|
||
|
||
# 准备文件的下载
|
||
import shutil
|
||
for pdf_path in generated_conclusion_files:
|
||
# 重命名文件
|
||
rename_file = f'./gpt_log/总结论文-{os.path.basename(pdf_path)}'
|
||
if os.path.exists(rename_file):
|
||
os.remove(rename_file)
|
||
shutil.copyfile(pdf_path, rename_file)
|
||
if os.path.exists(pdf_path):
|
||
os.remove(pdf_path)
|
||
chatbot.append(("给出输出文件清单", str(generated_conclusion_files)))
|
||
yield from update_ui(chatbot=chatbot, history=chatbot, msg=msg)
|