238 lines
10 KiB
Python
238 lines
10 KiB
Python
# 借鉴了 https://github.com/GaiZhenbiao/ChuanhuChatGPT 项目
|
||
|
||
"""
|
||
该文件中主要包含三个函数
|
||
|
||
不具备多线程能力的函数:
|
||
1. predict: 正常对话时使用,具备完备的交互功能,不可多线程
|
||
|
||
具备多线程调用能力的函数
|
||
2. predict_no_ui:高级实验性功能模块调用,不会实时显示在界面上,参数简单,可以多线程并行,方便实现复杂的功能逻辑
|
||
3. predict_no_ui_long_connection:在实验过程中发现调用predict_no_ui处理长文档时,和openai的连接容易断掉,这个函数用stream的方式解决这个问题,同样支持多线程
|
||
"""
|
||
|
||
import json
|
||
import gradio as gr
|
||
import logging
|
||
import traceback
|
||
import requests
|
||
import importlib
|
||
|
||
# config_private.py放自己的秘密如API和代理网址
|
||
# 读取时首先看是否存在私密的config_private配置文件(不受git管控),如果有,则覆盖原config文件
|
||
try: from config_private import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
|
||
except: from config import proxies, API_URL, API_KEY, TIMEOUT_SECONDS, MAX_RETRY, LLM_MODEL
|
||
|
||
timeout_bot_msg = '[local] Request timeout, network error. please check proxy settings in config.py.'
|
||
|
||
def get_full_error(chunk, stream_response):
|
||
"""
|
||
获取完整的从Openai返回的报错
|
||
"""
|
||
while True:
|
||
try:
|
||
chunk += next(stream_response)
|
||
except:
|
||
break
|
||
return chunk
|
||
|
||
def predict_no_ui(inputs, top_p, temperature, history=[], sys_prompt=""):
|
||
"""
|
||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。
|
||
predict函数的简化版。
|
||
用于payload比较大的情况,或者用于实现多线、带嵌套的复杂功能。
|
||
|
||
inputs 是本次问询的输入
|
||
top_p, temperature是chatGPT的内部调优参数
|
||
history 是之前的对话列表
|
||
(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误,然后raise ConnectionAbortedError)
|
||
"""
|
||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=False)
|
||
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=False
|
||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||
json=payload, stream=False, timeout=TIMEOUT_SECONDS*2); break
|
||
except requests.exceptions.ReadTimeout as e:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
|
||
try:
|
||
result = json.loads(response.text)["choices"][0]["message"]["content"]
|
||
return result
|
||
except Exception as e:
|
||
if "choices" not in response.text: print(response.text)
|
||
raise ConnectionAbortedError("Json解析不合常规,可能是文本过长" + response.text)
|
||
|
||
|
||
def predict_no_ui_long_connection(inputs, top_p, temperature, history=[], sys_prompt=""):
|
||
"""
|
||
发送至chatGPT,等待回复,一次性完成,不显示中间过程。但内部用stream的方法避免有人中途掐网线。
|
||
"""
|
||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt=sys_prompt, stream=True)
|
||
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=False
|
||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||
json=payload, stream=True, timeout=TIMEOUT_SECONDS); break
|
||
except requests.exceptions.ReadTimeout as e:
|
||
retry += 1
|
||
traceback.print_exc()
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
if MAX_RETRY!=0: print(f'请求超时,正在重试 ({retry}/{MAX_RETRY}) ……')
|
||
|
||
stream_response = response.iter_lines()
|
||
result = ''
|
||
while True:
|
||
try: chunk = next(stream_response).decode()
|
||
except StopIteration: break
|
||
if len(chunk)==0: continue
|
||
if not chunk.startswith('data:'):
|
||
chunk = get_full_error(chunk.encode('utf8'), stream_response)
|
||
raise ConnectionAbortedError("OpenAI拒绝了请求:" + chunk.decode())
|
||
delta = json.loads(chunk.lstrip('data:'))['choices'][0]["delta"]
|
||
if len(delta) == 0: break
|
||
if "role" in delta: continue
|
||
if "content" in delta: result += delta["content"]; print(delta["content"], end='')
|
||
else: raise RuntimeError("意外Json结构:"+delta)
|
||
return result
|
||
|
||
|
||
def predict(inputs, top_p, temperature, chatbot=[], history=[], system_prompt='',
|
||
stream = True, additional_fn=None):
|
||
"""
|
||
发送至chatGPT,流式获取输出。
|
||
用于基础的对话功能。
|
||
inputs 是本次问询的输入
|
||
top_p, temperature是chatGPT的内部调优参数
|
||
history 是之前的对话列表(注意无论是inputs还是history,内容太长了都会触发token数量溢出的错误)
|
||
chatbot 为WebUI中显示的对话列表,修改它,然后yeild出去,可以直接修改对话界面内容
|
||
additional_fn代表点击的哪个按钮,按钮见functional.py
|
||
"""
|
||
if additional_fn is not None:
|
||
import functional
|
||
importlib.reload(functional)
|
||
functional = functional.get_functionals()
|
||
inputs = functional[additional_fn]["Prefix"] + inputs + functional[additional_fn]["Suffix"]
|
||
|
||
if stream:
|
||
raw_input = inputs
|
||
logging.info(f'[raw_input] {raw_input}')
|
||
chatbot.append((inputs, ""))
|
||
yield chatbot, history, "等待响应"
|
||
|
||
headers, payload = generate_payload(inputs, top_p, temperature, history, system_prompt, stream)
|
||
history.append(inputs); history.append(" ")
|
||
|
||
retry = 0
|
||
while True:
|
||
try:
|
||
# make a POST request to the API endpoint, stream=True
|
||
response = requests.post(API_URL, headers=headers, proxies=proxies,
|
||
json=payload, stream=True, timeout=TIMEOUT_SECONDS);break
|
||
except:
|
||
retry += 1
|
||
chatbot[-1] = ((chatbot[-1][0], timeout_bot_msg))
|
||
retry_msg = f",正在重试 ({retry}/{MAX_RETRY}) ……" if MAX_RETRY > 0 else ""
|
||
yield chatbot, history, "请求超时"+retry_msg
|
||
if retry > MAX_RETRY: raise TimeoutError
|
||
|
||
gpt_replying_buffer = ""
|
||
|
||
is_head_of_the_stream = True
|
||
if stream:
|
||
stream_response = response.iter_lines()
|
||
while True:
|
||
chunk = next(stream_response)
|
||
# print(chunk.decode()[6:])
|
||
if is_head_of_the_stream:
|
||
# 数据流的第一帧不携带content
|
||
is_head_of_the_stream = False; continue
|
||
|
||
if chunk:
|
||
try:
|
||
if len(json.loads(chunk.decode()[6:])['choices'][0]["delta"]) == 0:
|
||
# 判定为数据流的结束,gpt_replying_buffer也写完了
|
||
logging.info(f'[response] {gpt_replying_buffer}')
|
||
break
|
||
# 处理数据流的主体
|
||
chunkjson = json.loads(chunk.decode()[6:])
|
||
status_text = f"finish_reason: {chunkjson['choices'][0]['finish_reason']}"
|
||
# 如果这里抛出异常,一般是文本过长,详情见get_full_error的输出
|
||
gpt_replying_buffer = gpt_replying_buffer + json.loads(chunk.decode()[6:])['choices'][0]["delta"]["content"]
|
||
history[-1] = gpt_replying_buffer
|
||
chatbot[-1] = (history[-2], history[-1])
|
||
yield chatbot, history, status_text
|
||
|
||
except Exception as e:
|
||
traceback.print_exc()
|
||
yield chatbot, history, "Json解析不合常规"
|
||
chunk = get_full_error(chunk, stream_response)
|
||
error_msg = chunk.decode()
|
||
if "reduce the length" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Input (or history) is too long, please reduce input or clear history by refleshing this page.")
|
||
history = []
|
||
elif "Incorrect API key" in error_msg:
|
||
chatbot[-1] = (chatbot[-1][0], "[Local Message] Incorrect API key provided.")
|
||
else:
|
||
from toolbox import regular_txt_to_markdown
|
||
tb_str = regular_txt_to_markdown(traceback.format_exc())
|
||
chatbot[-1] = (chatbot[-1][0], f"[Local Message] Json Error \n\n {tb_str} \n\n {regular_txt_to_markdown(chunk.decode()[4:])}")
|
||
yield chatbot, history, "Json解析不合常规" + error_msg
|
||
return
|
||
|
||
def generate_payload(inputs, top_p, temperature, history, system_prompt, stream):
|
||
"""
|
||
整合所有信息,选择LLM模型,生成http请求,为发送请求做准备
|
||
"""
|
||
headers = {
|
||
"Content-Type": "application/json",
|
||
"Authorization": f"Bearer {API_KEY}"
|
||
}
|
||
|
||
conversation_cnt = len(history) // 2
|
||
|
||
messages = [{"role": "system", "content": system_prompt}]
|
||
if conversation_cnt:
|
||
for index in range(0, 2*conversation_cnt, 2):
|
||
what_i_have_asked = {}
|
||
what_i_have_asked["role"] = "user"
|
||
what_i_have_asked["content"] = history[index]
|
||
what_gpt_answer = {}
|
||
what_gpt_answer["role"] = "assistant"
|
||
what_gpt_answer["content"] = history[index+1]
|
||
if what_i_have_asked["content"] != "":
|
||
if what_gpt_answer["content"] == "": continue
|
||
if what_gpt_answer["content"] == timeout_bot_msg: continue
|
||
messages.append(what_i_have_asked)
|
||
messages.append(what_gpt_answer)
|
||
else:
|
||
messages[-1]['content'] = what_gpt_answer['content']
|
||
|
||
what_i_ask_now = {}
|
||
what_i_ask_now["role"] = "user"
|
||
what_i_ask_now["content"] = inputs
|
||
messages.append(what_i_ask_now)
|
||
|
||
payload = {
|
||
"model": LLM_MODEL,
|
||
"messages": messages,
|
||
"temperature": temperature, # 1.0,
|
||
"top_p": top_p, # 1.0,
|
||
"n": 1,
|
||
"stream": stream,
|
||
"presence_penalty": 0,
|
||
"frequency_penalty": 0,
|
||
}
|
||
|
||
print(f" {LLM_MODEL} : {conversation_cnt} : {inputs}")
|
||
return headers,payload
|
||
|
||
|