chatgpt_academic/request_llms/com_zhipuglm.py
2024-03-20 18:09:37 +08:00

87 lines
4.0 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# encoding: utf-8
# @Time : 2024/1/22
# @Author : Kilig947 & binary husky
# @Descr : 兼容最新的智谱Ai
from toolbox import get_conf
from zhipuai import ZhipuAI
from toolbox import get_conf, encode_image, get_pictures_list
import logging, os
def input_encode_handler(inputs:str, llm_kwargs:dict):
if llm_kwargs["most_recent_uploaded"].get("path"):
image_paths = get_pictures_list(llm_kwargs["most_recent_uploaded"]["path"])
md_encode = []
for md_path in image_paths:
type_ = os.path.splitext(md_path)[1].replace(".", "")
type_ = "jpeg" if type_ == "jpg" else type_
md_encode.append({"data": encode_image(md_path), "type": type_})
return inputs, md_encode
class ZhipuChatInit:
def __init__(self):
ZHIPUAI_API_KEY, ZHIPUAI_MODEL = get_conf("ZHIPUAI_API_KEY", "ZHIPUAI_MODEL")
if len(ZHIPUAI_MODEL) > 0:
logging.error('ZHIPUAI_MODEL 配置项选项已经弃用请在LLM_MODEL中配置')
self.zhipu_bro = ZhipuAI(api_key=ZHIPUAI_API_KEY)
self.model = ''
def __conversation_user(self, user_input: str, llm_kwargs:dict):
if self.model not in ["glm-4v"]:
return {"role": "user", "content": user_input}
else:
input_, encode_img = input_encode_handler(user_input, llm_kwargs=llm_kwargs)
what_i_have_asked = {"role": "user", "content": []}
what_i_have_asked['content'].append({"type": 'text', "text": user_input})
if encode_img:
img_d = {"type": "image_url",
"image_url": {'url': encode_img}}
what_i_have_asked['content'].append(img_d)
return what_i_have_asked
def __conversation_history(self, history:list, llm_kwargs:dict):
messages = []
conversation_cnt = len(history) // 2
if conversation_cnt:
for index in range(0, 2 * conversation_cnt, 2):
what_i_have_asked = self.__conversation_user(history[index], llm_kwargs)
what_gpt_answer = {
"role": "assistant",
"content": history[index + 1]
}
messages.append(what_i_have_asked)
messages.append(what_gpt_answer)
return messages
def __conversation_message_payload(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
messages = []
if system_prompt:
messages.append({"role": "system", "content": system_prompt})
self.model = llm_kwargs['llm_model']
messages.extend(self.__conversation_history(history, llm_kwargs)) # 处理 history
if inputs.strip() == "": # 处理空输入导致报错的问题 https://github.com/binary-husky/gpt_academic/issues/1640 提示 {"error":{"code":"1214","message":"messages[1]:content和tool_calls 字段不能同时为空"}
inputs = "." # 空格、换行、空字符串都会报错,所以用最没有意义的一个点代替
messages.append(self.__conversation_user(inputs, llm_kwargs)) # 处理用户对话
response = self.zhipu_bro.chat.completions.create(
model=self.model, messages=messages, stream=True,
temperature=llm_kwargs.get('temperature', 0.95) * 0.95, # 只能传默认的 temperature 和 top_p
top_p=llm_kwargs.get('top_p', 0.7) * 0.7,
max_tokens=llm_kwargs.get('max_tokens', 1024 * 4), # 最大输出模型的一半
)
return response
def generate_chat(self, inputs:str, llm_kwargs:dict, history:list, system_prompt:str):
self.model = llm_kwargs['llm_model']
response = self.__conversation_message_payload(inputs, llm_kwargs, history, system_prompt)
bro_results = ''
for chunk in response:
bro_results += chunk.choices[0].delta.content
yield chunk.choices[0].delta.content, bro_results
if __name__ == '__main__':
zhipu = ZhipuChatInit()
zhipu.generate_chat('你好', {'llm_model': 'glm-4'}, [], '你是WPSAi')