Modify setup.py to use a safetensors file.

This commit is contained in:
hodanov 2023-11-26 12:03:13 +09:00
parent 41817006cf
commit 04d5255912
4 changed files with 59 additions and 93 deletions

View File

@ -1,14 +1,13 @@
from __future__ import annotations from __future__ import annotations
from setup import stub from setup import stub
from txt2img import new_stable_diffusion from txt2img import StableDiffusion
@stub.function(gpu="A10G") @stub.function(gpu="A10G")
def main(): def main():
sd = new_stable_diffusion() StableDiffusion
print(f"Deploy '{sd.__class__.__name__}'.")
if __name__ == "__main__": if __name__ == "__main__":
main() main.local()

View File

@ -7,28 +7,28 @@
########## ##########
# You can use a diffusers model and VAE on hugging face. # You can use a diffusers model and VAE on hugging face.
model: model:
name: stable-diffusion-2-1 name: stable-diffusion-1-5
repo_id: stabilityai/stable-diffusion-2-1 url: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors
vae: vae:
name: sd-vae-ft-mse name: sd-vae-ft-mse
repo_id: stabilityai/sd-vae-ft-mse url: https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors
########## ##########
# Add LoRA if you want to use one. You can use a download url such as the below. # Add LoRA if you want to use one. You can use a download url such as the below.
# ex) # ex)
# loras: # loras:
# - name: hogehoge.safetensors # - name: hogehoge.safetensors
# download_url: https://hogehoge/xxxx # url: https://hogehoge/xxxx
# - name: fugafuga.safetensors # - name: fugafuga.safetensors
# download_url: https://fugafuga/xxxx # url: https://fugafuga/xxxx
########## ##########
# You can use Textual Inversion and ControlNet also. Usage is the same as `loras`. # You can use Textual Inversion and ControlNet also. Usage is the same as `loras`.
# ex) # ex)
# textual_inversions: # textual_inversions:
# - name: hogehoge # - name: hogehoge
# download_url: https://hogehoge/xxxx # url: https://hogehoge/xxxx
# - name: fugafuga # - name: fugafuga
# download_url: https://fugafuga/xxxx # url: https://fugafuga/xxxx
controlnets: controlnets:
- name: control_v11f1e_sd15_tile - name: control_v11f1e_sd15_tile
repo_id: lllyasviel/control_v11f1e_sd15_tile repo_id: lllyasviel/control_v11f1e_sd15_tile

View File

@ -38,26 +38,26 @@ def download_controlnet(name: str, repo_id: str, token: str):
controlnet.save_pretrained(cache_path, safe_serialization=True) controlnet.save_pretrained(cache_path, safe_serialization=True)
def download_vae(name: str, repo_id: str, token: str): def download_vae(name: str, model_url: str, token: str):
""" """
Download a vae. Download a vae.
""" """
cache_path = os.path.join(BASE_CACHE_PATH, name) cache_path = os.path.join(BASE_CACHE_PATH, name)
vae = diffusers.AutoencoderKL.from_pretrained( vae = diffusers.AutoencoderKL.from_single_file(
repo_id, pretrained_model_link_or_path=model_url,
use_auth_token=token, use_auth_token=token,
cache_dir=cache_path, cache_dir=cache_path,
) )
vae.save_pretrained(cache_path, safe_serialization=True) vae.save_pretrained(cache_path, safe_serialization=True)
def download_model(name: str, repo_id: str, token: str): def download_model(name: str, model_url: str, token: str):
""" """
Download a model. Download a model.
""" """
cache_path = os.path.join(BASE_CACHE_PATH, name) cache_path = os.path.join(BASE_CACHE_PATH, name)
pipe = diffusers.StableDiffusionPipeline.from_pretrained( pipe = diffusers.StableDiffusionPipeline.from_single_file(
repo_id, pretrained_model_link_or_path=model_url,
use_auth_token=token, use_auth_token=token,
cache_dir=cache_path, cache_dir=cache_path,
) )
@ -77,11 +77,11 @@ def build_image():
model = config.get("model") model = config.get("model")
if model is not None: if model is not None:
download_model(name=model["name"], repo_id=model["repo_id"], token=token) download_model(name=model["name"], model_url=model["url"], token=token)
vae = config.get("vae") vae = config.get("vae")
if vae is not None: if vae is not None:
download_vae(name=model["name"], repo_id=vae["repo_id"], token=token) download_vae(name=model["name"], model_url=vae["url"], token=token)
controlnets = config.get("controlnets") controlnets = config.get("controlnets")
if controlnets is not None: if controlnets is not None:
@ -92,7 +92,7 @@ def build_image():
if loras is not None: if loras is not None:
for lora in loras: for lora in loras:
download_file( download_file(
url=lora["download_url"], url=lora["url"],
file_name=lora["name"], file_name=lora["name"],
file_path=BASE_CACHE_PATH_LORA, file_path=BASE_CACHE_PATH_LORA,
) )
@ -101,7 +101,7 @@ def build_image():
if textual_inversions is not None: if textual_inversions is not None:
for textual_inversion in textual_inversions: for textual_inversion in textual_inversions:
download_file( download_file(
url=textual_inversion["download_url"], url=textual_inversion["url"],
file_name=textual_inversion["name"], file_name=textual_inversion["name"],
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION, file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
) )

View File

@ -1,6 +1,5 @@
from __future__ import annotations from __future__ import annotations
import abc
import io import io
import os import os
@ -9,51 +8,20 @@ import PIL.Image
import torch import torch
from modal import Secret, method from modal import Secret, method
from setup import (BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET, from setup import (
BASE_CACHE_PATH_LORA, BASE_CACHE_PATH_TEXTUAL_INVERSION, BASE_CACHE_PATH,
stub) BASE_CACHE_PATH_CONTROLNET,
BASE_CACHE_PATH_LORA,
BASE_CACHE_PATH_TEXTUAL_INVERSION,
def new_stable_diffusion() -> StableDiffusionInterface: stub,
return StableDiffusion() )
class StableDiffusionInterface(metaclass=abc.ABCMeta):
"""
A StableDiffusionInterface is an interface that will be used for StableDiffusion class creation.
"""
@classmethod
def __subclasshook__(cls, subclass):
return hasattr(subclass, "run_inference") and callable(subclass.run_inference)
@abc.abstractmethod
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
samples: int = 1,
batch_size: int = 1,
steps: int = 30,
seed: int = 1,
upscaler: str = "",
use_face_enhancer: bool = False,
fix_by_controlnet_tile: bool = False,
) -> list[bytes]:
"""
Run inference.
"""
raise NotImplementedError
@stub.cls( @stub.cls(
gpu="A10G", gpu="A10G",
secrets=[Secret.from_dotenv(__file__)], secrets=[Secret.from_dotenv(__file__)],
) )
class StableDiffusion(StableDiffusionInterface): class StableDiffusion:
""" """
A class that wraps the Stable Diffusion pipeline and scheduler. A class that wraps the Stable Diffusion pipeline and scheduler.
""" """
@ -70,12 +38,11 @@ class StableDiffusion(StableDiffusionInterface):
else: else:
print(f"The directory '{self.cache_path}' does not exist.") print(f"The directory '{self.cache_path}' does not exist.")
# torch.cuda.memory._set_allocator_settings("max_split_size_mb:256")
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained( self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
self.cache_path, self.cache_path,
custom_pipeline="lpw_stable_diffusion", custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16, torch_dtype=torch.float16,
use_safetensors=True,
) )
# TODO: Add support for other schedulers. # TODO: Add support for other schedulers.
@ -90,8 +57,8 @@ class StableDiffusion(StableDiffusionInterface):
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained( self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
self.cache_path, self.cache_path,
subfolder="vae", subfolder="vae",
use_safetensors=True,
) )
self.pipe.to("cuda")
loras = config.get("loras") loras = config.get("loras")
if loras is not None: if loras is not None:
@ -113,7 +80,7 @@ class StableDiffusion(StableDiffusionInterface):
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.") print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
self.pipe.load_textual_inversion(path) self.pipe.load_textual_inversion(path)
self.pipe.enable_xformers_memory_efficient_attention() self.pipe = self.pipe.to("cuda")
# TODO: Repair the controlnet loading. # TODO: Repair the controlnet loading.
controlnets = config.get("controlnets") controlnets = config.get("controlnets")
@ -128,9 +95,9 @@ class StableDiffusion(StableDiffusionInterface):
scheduler=self.pipe.scheduler, scheduler=self.pipe.scheduler,
vae=self.pipe.vae, vae=self.pipe.vae,
torch_dtype=torch.float16, torch_dtype=torch.float16,
use_safetensors=True,
) )
self.controlnet_pipe.to("cuda") self.controlnet_pipe = self.controlnet_pipe.to("cuda")
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
def _count_token(self, p: str, n: str) -> int: def _count_token(self, p: str, n: str) -> int:
""" """
@ -164,7 +131,6 @@ class StableDiffusion(StableDiffusionInterface):
n_prompt: str, n_prompt: str,
height: int = 512, height: int = 512,
width: int = 512, width: int = 512,
samples: int = 1,
batch_size: int = 1, batch_size: int = 1,
steps: int = 30, steps: int = 30,
seed: int = 1, seed: int = 1,
@ -175,21 +141,21 @@ class StableDiffusion(StableDiffusionInterface):
""" """
Runs the Stable Diffusion pipeline on the given prompt and outputs images. Runs the Stable Diffusion pipeline on the given prompt and outputs images.
""" """
max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt) max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
generator = torch.Generator("cuda").manual_seed(seed) generator = torch.Generator("cuda").manual_seed(seed)
with torch.inference_mode(): self.pipe.enable_vae_tiling()
with torch.autocast("cuda"): self.pipe.enable_xformers_memory_efficient_attention()
generated_images = self.pipe( with torch.autocast("cuda"):
prompt * batch_size, generated_images = self.pipe(
negative_prompt=n_prompt * batch_size, prompt * batch_size,
height=height, negative_prompt=n_prompt * batch_size,
width=width, height=height,
num_inference_steps=steps, width=width,
guidance_scale=7.5, num_inference_steps=steps,
max_embeddings_multiples=max_embeddings_multiples, guidance_scale=7.5,
generator=generator, max_embeddings_multiples=max_embeddings_multiples,
).images generator=generator,
).images
base_images = generated_images base_images = generated_images
@ -198,20 +164,21 @@ class StableDiffusion(StableDiffusionInterface):
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
""" """
if fix_by_controlnet_tile: if fix_by_controlnet_tile:
self.controlnet_pipe.enable_vae_tiling()
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
for image in base_images: for image in base_images:
image = self._resize_image(image=image, scale_factor=2) image = self._resize_image(image=image, scale_factor=2)
with torch.inference_mode(): with torch.autocast("cuda"):
with torch.autocast("cuda"): fixed_by_controlnet = self.controlnet_pipe(
fixed_by_controlnet = self.controlnet_pipe( prompt=prompt * batch_size,
prompt=prompt * batch_size, negative_prompt=n_prompt * batch_size,
negative_prompt=n_prompt * batch_size, num_inference_steps=steps,
num_inference_steps=steps, strength=0.3,
strength=0.3, guidance_scale=7.5,
guidance_scale=7.5, max_embeddings_multiples=max_embeddings_multiples,
max_embeddings_multiples=max_embeddings_multiples, generator=generator,
generator=generator, image=image,
image=image, ).images
).images
generated_images.extend(fixed_by_controlnet) generated_images.extend(fixed_by_controlnet)
base_images = fixed_by_controlnet base_images = fixed_by_controlnet