Modify to use seed.
This commit is contained in:
		
							parent
							
								
									a9063a999d
								
							
						
					
					
						commit
						337bf01048
					
				
							
								
								
									
										3
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										3
									
								
								Makefile
									
									
									
									
									
								
							@ -2,8 +2,9 @@ run:
 | 
			
		||||
	modal run sd_cli.py \
 | 
			
		||||
	--prompt "A woman with bob hair" \
 | 
			
		||||
	--n-prompt "" \
 | 
			
		||||
	--upscaler "RealESRGAN_x4plus_anime_6B" \
 | 
			
		||||
	--height 768 \
 | 
			
		||||
	--width 512 \
 | 
			
		||||
	--samples 5 \
 | 
			
		||||
	--steps 50 \
 | 
			
		||||
	--upscaler "RealESRGAN_x4plus_anime_6B"
 | 
			
		||||
	--seed 500
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										12
									
								
								sd_cli.py
									
									
									
									
									
								
							
							
						
						
									
										12
									
								
								sd_cli.py
									
									
									
									
									
								
							@ -101,6 +101,7 @@ class StableDiffusion:
 | 
			
		||||
        """
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        generator = torch.Generator("cuda").manual_seed(inputs["seed"])
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            with torch.autocast("cuda"):
 | 
			
		||||
                base_images = self.pipe(
 | 
			
		||||
@ -111,6 +112,7 @@ class StableDiffusion:
 | 
			
		||||
                    num_inference_steps=inputs["steps"],
 | 
			
		||||
                    guidance_scale=7.5,
 | 
			
		||||
                    max_embeddings_multiples=inputs["max_embeddings_multiples"],
 | 
			
		||||
                    generator=generator,
 | 
			
		||||
                ).images
 | 
			
		||||
 | 
			
		||||
        if inputs["upscaler"] != "":
 | 
			
		||||
@ -197,12 +199,13 @@ class StableDiffusion:
 | 
			
		||||
def entrypoint(
 | 
			
		||||
    prompt: str,
 | 
			
		||||
    n_prompt: str,
 | 
			
		||||
    upscaler: str,
 | 
			
		||||
    height: int = 512,
 | 
			
		||||
    width: int = 512,
 | 
			
		||||
    samples: int = 5,
 | 
			
		||||
    batch_size: int = 1,
 | 
			
		||||
    steps: int = 20,
 | 
			
		||||
    upscaler: str = "",
 | 
			
		||||
    seed: int = -1,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    This function is the entrypoint for the Runway CLI.
 | 
			
		||||
@ -210,6 +213,9 @@ def entrypoint(
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    if seed == -1:
 | 
			
		||||
        seed = util.generate_seed()
 | 
			
		||||
 | 
			
		||||
    inputs: dict[str, int | str] = {
 | 
			
		||||
        "prompt": prompt,
 | 
			
		||||
        "n_prompt": n_prompt,
 | 
			
		||||
@ -219,7 +225,7 @@ def entrypoint(
 | 
			
		||||
        "batch_size": batch_size,
 | 
			
		||||
        "steps": steps,
 | 
			
		||||
        "upscaler": upscaler,
 | 
			
		||||
        # seed=-1
 | 
			
		||||
        "seed": seed,
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
 | 
			
		||||
@ -229,7 +235,7 @@ def entrypoint(
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        images = sd.run_inference.call(inputs)
 | 
			
		||||
        util.save_images(directory, images, i)
 | 
			
		||||
        util.save_images(directory, images, inputs, i)
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										17
									
								
								util.py
									
									
									
									
									
								
							
							
						
						
									
										17
									
								
								util.py
									
									
									
									
									
								
							@ -1,4 +1,5 @@
 | 
			
		||||
""" Utility functions for the script. """
 | 
			
		||||
import random
 | 
			
		||||
import time
 | 
			
		||||
from datetime import date
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
@ -9,6 +10,16 @@ OUTPUT_DIRECTORY = "outputs"
 | 
			
		||||
DATE_TODAY = date.today().strftime("%Y-%m-%d")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def generate_seed() -> int:
 | 
			
		||||
    """
 | 
			
		||||
    Generate a random seed.
 | 
			
		||||
    """
 | 
			
		||||
    seed = random.randint(0, 4294967295)
 | 
			
		||||
    print(f"Generate a random seed: {seed}")
 | 
			
		||||
 | 
			
		||||
    return seed
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def make_directory() -> Path:
 | 
			
		||||
    """
 | 
			
		||||
    Make a directory for saving outputs.
 | 
			
		||||
@ -16,7 +27,7 @@ def make_directory() -> Path:
 | 
			
		||||
    directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
 | 
			
		||||
    if not directory.exists():
 | 
			
		||||
        directory.mkdir(exist_ok=True, parents=True)
 | 
			
		||||
        print(f"Make directory: {directory}")
 | 
			
		||||
        print(f"Make a directory: {directory}")
 | 
			
		||||
 | 
			
		||||
    return directory
 | 
			
		||||
 | 
			
		||||
@ -54,13 +65,13 @@ def count_token(p: str, n: str) -> int:
 | 
			
		||||
    return max_embeddings_multiples
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def save_images(directory: Path, images: list[bytes], i: int):
 | 
			
		||||
def save_images(directory: Path, images: list[bytes], inputs: dict[str, int | str], i: int):
 | 
			
		||||
    """
 | 
			
		||||
    Save images to a file.
 | 
			
		||||
    """
 | 
			
		||||
    for j, image_bytes in enumerate(images):
 | 
			
		||||
        formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
 | 
			
		||||
        output_path = directory / f"{formatted_time}_{i}_{j}.png"
 | 
			
		||||
        output_path = directory / f"{formatted_time}_{inputs['seed']}_{i}_{j}.png"
 | 
			
		||||
        print(f"Saving it to {output_path}")
 | 
			
		||||
        with open(output_path, "wb") as file:
 | 
			
		||||
            file.write(image_bytes)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user