Add Dockerfile. Modify script to build from the Dockerfile.
This commit is contained in:
		
							parent
							
								
									869b4b8bc5
								
							
						
					
					
						commit
						51f2836df8
					
				
							
								
								
									
										5
									
								
								Dockerfile
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										5
									
								
								Dockerfile
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,5 @@
 | 
				
			|||||||
 | 
					FROM python:3.11.3-slim-bullseye
 | 
				
			||||||
 | 
					COPY requirements.txt /
 | 
				
			||||||
 | 
					RUN apt update \
 | 
				
			||||||
 | 
					    && apt install -y wget git \
 | 
				
			||||||
 | 
					    && pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu117 --pre xformers
 | 
				
			||||||
@ -1,5 +1,9 @@
 | 
				
			|||||||
modal-client
 | 
					accelerate
 | 
				
			||||||
# The below packages are not necessary because them are installed into the image on Modal.
 | 
					scipy
 | 
				
			||||||
# However, you prevent some lint errors when you edit the code by the editor like VSCode or Vim.
 | 
					diffusers[torch]
 | 
				
			||||||
diffusers
 | 
					safetensors
 | 
				
			||||||
torch
 | 
					torch==2.0.1+cu117
 | 
				
			||||||
 | 
					torchvision
 | 
				
			||||||
 | 
					torchmetrics
 | 
				
			||||||
 | 
					omegaconf
 | 
				
			||||||
 | 
					transformers
 | 
				
			||||||
 | 
				
			|||||||
							
								
								
									
										41
									
								
								sd_cli.py
									
									
									
									
									
								
							
							
						
						
									
										41
									
								
								sd_cli.py
									
									
									
									
									
								
							@ -4,7 +4,7 @@ import os
 | 
				
			|||||||
import time
 | 
					import time
 | 
				
			||||||
from datetime import date
 | 
					from datetime import date
 | 
				
			||||||
from pathlib import Path
 | 
					from pathlib import Path
 | 
				
			||||||
from modal import Image, Secret, Stub, method
 | 
					from modal import Image, Secret, Stub, method, Mount
 | 
				
			||||||
 | 
					
 | 
				
			||||||
stub = Stub("stable-diffusion-cli")
 | 
					stub = Stub("stable-diffusion-cli")
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -17,7 +17,6 @@ def download_models():
 | 
				
			|||||||
    diffusers.StableDiffusionPipeline.from_pretrained().
 | 
					    diffusers.StableDiffusionPipeline.from_pretrained().
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    import diffusers
 | 
					    import diffusers
 | 
				
			||||||
    import torch
 | 
					 | 
				
			||||||
 | 
					
 | 
				
			||||||
    hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
 | 
					    hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
 | 
				
			||||||
    model_repo_id = os.environ["MODEL_REPO_ID"]
 | 
					    model_repo_id = os.environ["MODEL_REPO_ID"]
 | 
				
			||||||
@ -34,30 +33,17 @@ def download_models():
 | 
				
			|||||||
    pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
					    pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
				
			||||||
        model_repo_id,
 | 
					        model_repo_id,
 | 
				
			||||||
        use_auth_token=hugging_face_token,
 | 
					        use_auth_token=hugging_face_token,
 | 
				
			||||||
        torch_dtype=torch.float16,
 | 
					 | 
				
			||||||
        cache_dir=cache_path,
 | 
					        cache_dir=cache_path,
 | 
				
			||||||
    )
 | 
					    )
 | 
				
			||||||
    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
					    pipe.save_pretrained(cache_path, safe_serialization=True)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
stub_image = (
 | 
					stub_image = Image.from_dockerfile(
 | 
				
			||||||
    Image.debian_slim(python_version="3.10")
 | 
					    path="./Dockerfile",
 | 
				
			||||||
    .pip_install(
 | 
					    context_mount=Mount.from_local_file("./requirements.txt"),
 | 
				
			||||||
        "accelerate",
 | 
					).run_function(
 | 
				
			||||||
        "diffusers[torch]>=0.15.1",
 | 
					    download_models,
 | 
				
			||||||
        "ftfy",
 | 
					    secrets=[Secret.from_dotenv(__file__)],
 | 
				
			||||||
        "torch",
 | 
					 | 
				
			||||||
        "torchvision",
 | 
					 | 
				
			||||||
        "transformers~=4.25.1",
 | 
					 | 
				
			||||||
        "triton",
 | 
					 | 
				
			||||||
        "safetensors",
 | 
					 | 
				
			||||||
        "torch>=2.0",
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
    .pip_install("xformers", pre=True)
 | 
					 | 
				
			||||||
    .run_function(
 | 
					 | 
				
			||||||
        download_models,
 | 
					 | 
				
			||||||
        secrets=[Secret.from_dotenv(__file__)],
 | 
					 | 
				
			||||||
    )
 | 
					 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
stub.image = stub_image
 | 
					stub.image = stub_image
 | 
				
			||||||
 | 
					
 | 
				
			||||||
@ -84,21 +70,14 @@ class StableDiffusion:
 | 
				
			|||||||
        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
					        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
				
			||||||
            cache_path,
 | 
					            cache_path,
 | 
				
			||||||
            subfolder="scheduler",
 | 
					            subfolder="scheduler",
 | 
				
			||||||
            solver_order=2,
 | 
					 | 
				
			||||||
            prediction_type="epsilon",
 | 
					 | 
				
			||||||
            thresholding=False,
 | 
					 | 
				
			||||||
            algorithm_type="dpmsolver++",
 | 
					 | 
				
			||||||
            solver_type="midpoint",
 | 
					 | 
				
			||||||
            denoise_final=True,  # important if steps are <= 10
 | 
					 | 
				
			||||||
            low_cpu_mem_usage=True,
 | 
					 | 
				
			||||||
            device_map="auto",
 | 
					 | 
				
			||||||
        )
 | 
					        )
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
					        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
				
			||||||
            cache_path,
 | 
					            cache_path,
 | 
				
			||||||
            scheduler=scheduler,
 | 
					            scheduler=scheduler,
 | 
				
			||||||
            low_cpu_mem_usage=True,
 | 
					            custom_pipeline="lpw_stable_diffusion",
 | 
				
			||||||
            device_map="auto",
 | 
					            max_embeddings_multiples=2,
 | 
				
			||||||
 | 
					            safety_checker=None,
 | 
				
			||||||
        ).to("cuda")
 | 
					        ).to("cuda")
 | 
				
			||||||
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
					        self.pipe.enable_xformers_memory_efficient_attention()
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
				
			|||||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user