Merge pull request #56 from hodanov/feature/modify_to_use_safetensors_file
Modify to use safetensors file and refactor some codes
This commit is contained in:
commit
61f61b5113
48
README.md
48
README.md
@ -1,8 +1,8 @@
|
||||
[日本語版 README はこちら](README_ja.md)
|
||||
|
||||
# Stable Diffusion Modal
|
||||
# Stable Diffusion CLI on Modal
|
||||
|
||||
This is a Diffusers-based script for running Stable Diffusion on [Modal](https://modal.com/). It can perform txt2img inference and has the ability to increase resolution using ControlNet Tile and Upscaler.
|
||||
This is a Diffusers-based script for running Stable Diffusion on [Modal](https://modal.com/). This script has no WebUI and only works with CLI. It can perform txt2img inference and has the ability to increase resolution using ControlNet Tile and Upscaler.
|
||||
|
||||
## Features
|
||||
|
||||
@ -25,13 +25,13 @@ The app requires the following to run:
|
||||
|
||||
The `modal-client` is the Python library. In order to install that:
|
||||
|
||||
```
|
||||
```bash
|
||||
pip install modal-client
|
||||
```
|
||||
|
||||
And you need a modal token to use this script:
|
||||
|
||||
```
|
||||
```bash
|
||||
modal token new
|
||||
```
|
||||
|
||||
@ -51,7 +51,7 @@ Images are generated and output to the `outputs/` directory.
|
||||
|
||||
## Directory structure
|
||||
|
||||
```
|
||||
```txt
|
||||
.
|
||||
├── .env # Secrets manager
|
||||
├── Makefile
|
||||
@ -73,7 +73,7 @@ Images are generated and output to the `outputs/` directory.
|
||||
|
||||
### 1. `git clone` the repository
|
||||
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/hodanov/stable-diffusion-modal.git
|
||||
cd stable-diffusion-modal
|
||||
```
|
||||
@ -84,53 +84,41 @@ Hugging Add hugging_face_token to .env file.
|
||||
|
||||
This script downloads and uses a model from HuggingFace, but if you want to use a model in a private repository, you will need to set this environment variable.
|
||||
|
||||
```
|
||||
```txt
|
||||
HUGGING_FACE_TOKEN="Write your hugging face token here."
|
||||
```
|
||||
|
||||
### 3. Add the model to ./setup_files/config.yml
|
||||
|
||||
Add the model used for inference. VAE, LoRA, and Textual Inversion are also configurable.
|
||||
Add the model used for inference. Use the Safetensors file as is. VAE, LoRA, and Textual Inversion are also configurable.
|
||||
|
||||
```
|
||||
```yml
|
||||
# ex)
|
||||
model:
|
||||
name: stable-diffusion-2-1
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
name: stable-diffusion-1-5
|
||||
url: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors # Specify URL for the safetensor file.
|
||||
vae:
|
||||
name: sd-vae-ft-mse
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
url: https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors
|
||||
controlnets:
|
||||
- name: control_v11f1e_sd15_tile
|
||||
repo_id: lllyasviel/control_v11f1e_sd15_tile
|
||||
```
|
||||
|
||||
Use a model configured for Diffusers, such as the one found in [this repository](https://huggingface.co/stabilityai/stable-diffusion-2-1). Files in safetensor format shared by Civitai etc. need to be converted (you can do so with a script in the diffusers official repository).
|
||||
If you want to use LoRA and Textual Inversion, configure as follows.
|
||||
|
||||
[https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py](https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py)
|
||||
|
||||
```
|
||||
# Example of using conversion script
|
||||
python ./diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --from_safetensors \
|
||||
--checkpoint_path="Write the filename of safetensor format here" \
|
||||
--dump_path="Write the output path here" \
|
||||
--device='cuda:0'
|
||||
```
|
||||
|
||||
LoRA and Textual Inversion don't require any conversion and can directly use safetensors files. Add the download link to config.yml as below.
|
||||
|
||||
```
|
||||
```yml
|
||||
# Example
|
||||
loras:
|
||||
- name: lora_name.safetensors # Specify the LoRA file name. Any name is fine, but the extension `.safetensors` is required.
|
||||
download_url: download_link_here # Specify the download link for the safetensor file.
|
||||
url: download_link_here # Specify the download link for the safetensor file.
|
||||
```
|
||||
|
||||
### 4. Setting prompts
|
||||
|
||||
Set the prompt to Makefile.
|
||||
|
||||
```
|
||||
```makefile
|
||||
# ex)
|
||||
run:
|
||||
cd ./sdcli && modal run txt2img.py \
|
||||
@ -150,7 +138,7 @@ run:
|
||||
|
||||
Execute the below command. An application will be deployed on Modal.
|
||||
|
||||
```
|
||||
```bash
|
||||
make deploy
|
||||
```
|
||||
|
||||
@ -158,7 +146,7 @@ make deploy
|
||||
|
||||
The txt2img inference is executed with the following command.
|
||||
|
||||
```
|
||||
```bash
|
||||
make run
|
||||
```
|
||||
|
||||
|
||||
52
README_ja.md
52
README_ja.md
@ -1,12 +1,12 @@
|
||||
# Stable Diffusion Modal
|
||||
# Stable Diffusion CLI on Modal
|
||||
|
||||
[Modal](https://modal.com/)上でStable Diffusionを動かすためのDiffusersベースのスクリプトです。txt2imgの推論を実行することができ、ControlNet TileとUpscalerを利用した高解像度化の機能を備えています。
|
||||
[Modal](https://modal.com/)上でStable Diffusionを動かすためのDiffusersベースのスクリプトです。WebUIは無く、CLIでのみ動作します。txt2imgの推論を実行することができ、ControlNet TileとUpscalerを利用した高解像度化の機能を備えています。
|
||||
|
||||
## このスクリプトでできること
|
||||
|
||||
1. txt2imgによる画像生成ができます。
|
||||
|
||||

|
||||

|
||||
|
||||
2. アップスケーラーとControlNet Tileを利用した高解像度な画像を生成することができます。
|
||||
|
||||
@ -27,13 +27,13 @@
|
||||
|
||||
`modal-client`はModalをCLIから操作するためのPythonライブラリです。下記のようにインストールします:
|
||||
|
||||
```
|
||||
```bash
|
||||
pip install modal-client
|
||||
```
|
||||
|
||||
And you need a modal token to use this script:
|
||||
|
||||
```
|
||||
```bash
|
||||
modal token new
|
||||
```
|
||||
|
||||
@ -51,7 +51,7 @@ modal token new
|
||||
|
||||
## ディレクトリ構成
|
||||
|
||||
```
|
||||
```txt
|
||||
.
|
||||
├── .env # Secrets manager
|
||||
├── Makefile
|
||||
@ -73,7 +73,7 @@ modal token new
|
||||
|
||||
### 1. リポジトリをgit cloneする
|
||||
|
||||
```
|
||||
```bash
|
||||
git clone https://github.com/hodanov/stable-diffusion-modal.git
|
||||
cd stable-diffusion-modal
|
||||
```
|
||||
@ -84,53 +84,43 @@ Hugging FaceのトークンをHUGGING_FACE_TOKENに記入します。
|
||||
|
||||
このスクリプトはHuggingFaceからモデルをダウンロードして使用しますが、プライベートリポジトリにあるモデルを参照する場合、この環境変数の設定が必要です。
|
||||
|
||||
```
|
||||
```txt
|
||||
HUGGING_FACE_TOKEN="ここにHuggingFaceのトークンを記載する"
|
||||
```
|
||||
|
||||
### 3. ./setup_files/config.ymlを設定する
|
||||
|
||||
推論に使うモデルを設定します。VAE、LoRA、Textual Inversionも設定可能です。
|
||||
推論に使うモデルを設定します。Safetensorsファイルをそのまま利用します。VAE、LoRA、Textual Inversionも設定可能です。
|
||||
|
||||
```
|
||||
下記のように、nameにモデル名、urlにSafetensorsファイルがあるURLを指定します。
|
||||
|
||||
```yml
|
||||
# 設定例
|
||||
model:
|
||||
name: stable-diffusion-2-1 # モデル名を指定
|
||||
repo_id: stabilityai/stable-diffusion-2-1 # リポジトリのID(「プロファイル名/モデル名」の形で指定)
|
||||
name: stable-diffusion-1-5
|
||||
url: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors # Specify URL for the safetensor file.
|
||||
vae:
|
||||
name: sd-vae-ft-mse
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
url: https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors
|
||||
controlnets:
|
||||
- name: control_v11f1e_sd15_tile
|
||||
repo_id: lllyasviel/control_v11f1e_sd15_tile
|
||||
```
|
||||
|
||||
ModelとVAEは[こちらのリポジトリ](https://huggingface.co/stabilityai/stable-diffusion-2-1)にあるような、Diffusersのために構成されたモデルを利用します。Civitaiなどで共有されているsafetensors形式のファイルは変換が必要です(diffusersの公式リポジトリにあるスクリプトで変換できます)。
|
||||
LoRAは下記のように指定します。
|
||||
|
||||
[変換スクリプト](https://github.com/huggingface/diffusers/blob/main/scripts/convert_original_stable_diffusion_to_diffusers.py)
|
||||
|
||||
LoRAとTextual Inversionは変換不要で、safetensorsファイルをそのまま利用できます。
|
||||
|
||||
```
|
||||
```yml
|
||||
# 設定例
|
||||
loras:
|
||||
- name: mecha.safetensors # ファイル名を指定。任意の名前で良いが、拡張子`.safetensors`は必須。
|
||||
download_url: https://civitai.com/api/download/models/150907?type=Model&format=SafeTensor # ダウンロードリンクを指定
|
||||
```
|
||||
|
||||
```
|
||||
# 変換スクリプトの使用例
|
||||
python ./diffusers/scripts/convert_original_stable_diffusion_to_diffusers.py --from_safetensors \
|
||||
--checkpoint_path="ここに変換したいsafetensors形式のファイルを指定" \
|
||||
--dump_path="出力先を指定" \
|
||||
--device='cuda:0'
|
||||
url: https://civitai.com/api/download/models/150907?type=Model&format=SafeTensor # ダウンロードリンクを指定
|
||||
```
|
||||
|
||||
### 4. Makefileの設定(プロンプトの設定)
|
||||
|
||||
プロンプトをMakefileに設定します。
|
||||
|
||||
```
|
||||
```makefile
|
||||
# 設定例
|
||||
run:
|
||||
cd ./sdcli && modal run txt2img.py \
|
||||
@ -160,7 +150,7 @@ run:
|
||||
|
||||
下記のコマンドでModal上にアプリケーションが構築されます。
|
||||
|
||||
```
|
||||
```bash
|
||||
make deploy
|
||||
```
|
||||
|
||||
@ -168,6 +158,6 @@ make deploy
|
||||
|
||||
下記のコマンドでtxt2img推論が実行されます。
|
||||
|
||||
```
|
||||
```bash
|
||||
make run
|
||||
```
|
||||
|
||||
@ -1,14 +1,13 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from setup import stub
|
||||
from txt2img import new_stable_diffusion
|
||||
from txt2img import StableDiffusion
|
||||
|
||||
|
||||
@stub.function(gpu="A10G")
|
||||
def main():
|
||||
sd = new_stable_diffusion()
|
||||
print(f"Deploy '{sd.__class__.__name__}'.")
|
||||
StableDiffusion
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
main.local()
|
||||
|
||||
@ -7,28 +7,28 @@
|
||||
##########
|
||||
# You can use a diffusers model and VAE on hugging face.
|
||||
model:
|
||||
name: stable-diffusion-2-1
|
||||
repo_id: stabilityai/stable-diffusion-2-1
|
||||
name: stable-diffusion-1-5
|
||||
url: https://huggingface.co/runwayml/stable-diffusion-v1-5/blob/main/v1-5-pruned.safetensors
|
||||
vae:
|
||||
name: sd-vae-ft-mse
|
||||
repo_id: stabilityai/sd-vae-ft-mse
|
||||
url: https://huggingface.co/stabilityai/sd-vae-ft-mse-original/blob/main/vae-ft-mse-840000-ema-pruned.safetensors
|
||||
##########
|
||||
# Add LoRA if you want to use one. You can use a download url such as the below.
|
||||
# ex)
|
||||
# loras:
|
||||
# - name: hogehoge.safetensors
|
||||
# download_url: https://hogehoge/xxxx
|
||||
# url: https://hogehoge/xxxx
|
||||
# - name: fugafuga.safetensors
|
||||
# download_url: https://fugafuga/xxxx
|
||||
# url: https://fugafuga/xxxx
|
||||
|
||||
##########
|
||||
# You can use Textual Inversion and ControlNet also. Usage is the same as `loras`.
|
||||
# ex)
|
||||
# textual_inversions:
|
||||
# - name: hogehoge
|
||||
# download_url: https://hogehoge/xxxx
|
||||
# url: https://hogehoge/xxxx
|
||||
# - name: fugafuga
|
||||
# download_url: https://fugafuga/xxxx
|
||||
# url: https://fugafuga/xxxx
|
||||
controlnets:
|
||||
- name: control_v11f1e_sd15_tile
|
||||
repo_id: lllyasviel/control_v11f1e_sd15_tile
|
||||
|
||||
@ -38,26 +38,26 @@ def download_controlnet(name: str, repo_id: str, token: str):
|
||||
controlnet.save_pretrained(cache_path, safe_serialization=True)
|
||||
|
||||
|
||||
def download_vae(name: str, repo_id: str, token: str):
|
||||
def download_vae(name: str, model_url: str, token: str):
|
||||
"""
|
||||
Download a vae.
|
||||
"""
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, name)
|
||||
vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
repo_id,
|
||||
vae = diffusers.AutoencoderKL.from_single_file(
|
||||
pretrained_model_link_or_path=model_url,
|
||||
use_auth_token=token,
|
||||
cache_dir=cache_path,
|
||||
)
|
||||
vae.save_pretrained(cache_path, safe_serialization=True)
|
||||
|
||||
|
||||
def download_model(name: str, repo_id: str, token: str):
|
||||
def download_model(name: str, model_url: str, token: str):
|
||||
"""
|
||||
Download a model.
|
||||
"""
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, name)
|
||||
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
repo_id,
|
||||
pipe = diffusers.StableDiffusionPipeline.from_single_file(
|
||||
pretrained_model_link_or_path=model_url,
|
||||
use_auth_token=token,
|
||||
cache_dir=cache_path,
|
||||
)
|
||||
@ -77,11 +77,11 @@ def build_image():
|
||||
|
||||
model = config.get("model")
|
||||
if model is not None:
|
||||
download_model(name=model["name"], repo_id=model["repo_id"], token=token)
|
||||
download_model(name=model["name"], model_url=model["url"], token=token)
|
||||
|
||||
vae = config.get("vae")
|
||||
if vae is not None:
|
||||
download_vae(name=model["name"], repo_id=vae["repo_id"], token=token)
|
||||
download_vae(name=model["name"], model_url=vae["url"], token=token)
|
||||
|
||||
controlnets = config.get("controlnets")
|
||||
if controlnets is not None:
|
||||
@ -92,7 +92,7 @@ def build_image():
|
||||
if loras is not None:
|
||||
for lora in loras:
|
||||
download_file(
|
||||
url=lora["download_url"],
|
||||
url=lora["url"],
|
||||
file_name=lora["name"],
|
||||
file_path=BASE_CACHE_PATH_LORA,
|
||||
)
|
||||
@ -101,7 +101,7 @@ def build_image():
|
||||
if textual_inversions is not None:
|
||||
for textual_inversion in textual_inversions:
|
||||
download_file(
|
||||
url=textual_inversion["download_url"],
|
||||
url=textual_inversion["url"],
|
||||
file_name=textual_inversion["name"],
|
||||
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
)
|
||||
|
||||
@ -1,6 +1,5 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import abc
|
||||
import io
|
||||
import os
|
||||
|
||||
@ -9,51 +8,20 @@ import PIL.Image
|
||||
import torch
|
||||
from modal import Secret, method
|
||||
|
||||
from setup import (BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET,
|
||||
BASE_CACHE_PATH_LORA, BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
stub)
|
||||
|
||||
|
||||
def new_stable_diffusion() -> StableDiffusionInterface:
|
||||
return StableDiffusion()
|
||||
|
||||
|
||||
class StableDiffusionInterface(metaclass=abc.ABCMeta):
|
||||
"""
|
||||
A StableDiffusionInterface is an interface that will be used for StableDiffusion class creation.
|
||||
"""
|
||||
|
||||
@classmethod
|
||||
def __subclasshook__(cls, subclass):
|
||||
return hasattr(subclass, "run_inference") and callable(subclass.run_inference)
|
||||
|
||||
@abc.abstractmethod
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
samples: int = 1,
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
fix_by_controlnet_tile: bool = False,
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
Run inference.
|
||||
"""
|
||||
raise NotImplementedError
|
||||
from setup import (
|
||||
BASE_CACHE_PATH,
|
||||
BASE_CACHE_PATH_CONTROLNET,
|
||||
BASE_CACHE_PATH_LORA,
|
||||
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
stub,
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
gpu="A10G",
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
class StableDiffusion(StableDiffusionInterface):
|
||||
class StableDiffusion:
|
||||
"""
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
@ -70,12 +38,11 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
else:
|
||||
print(f"The directory '{self.cache_path}' does not exist.")
|
||||
|
||||
# torch.cuda.memory._set_allocator_settings("max_split_size_mb:256")
|
||||
|
||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
custom_pipeline="lpw_stable_diffusion",
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
)
|
||||
|
||||
# TODO: Add support for other schedulers.
|
||||
@ -90,8 +57,8 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="vae",
|
||||
use_safetensors=True,
|
||||
)
|
||||
self.pipe.to("cuda")
|
||||
|
||||
loras = config.get("loras")
|
||||
if loras is not None:
|
||||
@ -113,7 +80,7 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
|
||||
self.pipe.load_textual_inversion(path)
|
||||
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
self.pipe = self.pipe.to("cuda")
|
||||
|
||||
# TODO: Repair the controlnet loading.
|
||||
controlnets = config.get("controlnets")
|
||||
@ -128,9 +95,9 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
scheduler=self.pipe.scheduler,
|
||||
vae=self.pipe.vae,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
)
|
||||
self.controlnet_pipe.to("cuda")
|
||||
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||
self.controlnet_pipe = self.controlnet_pipe.to("cuda")
|
||||
|
||||
def _count_token(self, p: str, n: str) -> int:
|
||||
"""
|
||||
@ -164,7 +131,6 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
n_prompt: str,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
samples: int = 1,
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
@ -175,21 +141,21 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
|
||||
max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
|
||||
generator = torch.Generator("cuda").manual_seed(seed)
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
generated_images = self.pipe(
|
||||
prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
).images
|
||||
self.pipe.enable_vae_tiling()
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
with torch.autocast("cuda"):
|
||||
generated_images = self.pipe(
|
||||
prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
).images
|
||||
|
||||
base_images = generated_images
|
||||
|
||||
@ -198,20 +164,21 @@ class StableDiffusion(StableDiffusionInterface):
|
||||
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||
"""
|
||||
if fix_by_controlnet_tile:
|
||||
self.controlnet_pipe.enable_vae_tiling()
|
||||
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||
for image in base_images:
|
||||
image = self._resize_image(image=image, scale_factor=2)
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
fixed_by_controlnet = self.controlnet_pipe(
|
||||
prompt=prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
num_inference_steps=steps,
|
||||
strength=0.3,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
image=image,
|
||||
).images
|
||||
with torch.autocast("cuda"):
|
||||
fixed_by_controlnet = self.controlnet_pipe(
|
||||
prompt=prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
num_inference_steps=steps,
|
||||
strength=0.3,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
image=image,
|
||||
).images
|
||||
generated_images.extend(fixed_by_controlnet)
|
||||
base_images = fixed_by_controlnet
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user