Refactor sd_cli.py

This commit is contained in:
hodanov 2023-06-26 21:56:58 +09:00
parent ddb685e4f3
commit 643e0e2ea6

169
sd_cli.py
View File

@ -6,6 +6,7 @@ import time
from urllib.request import Request, urlopen
from modal import Image, Mount, Secret, Stub, method
from modal.cls import ClsMixin
BASE_CACHE_PATH = "/vol/cache"
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
@ -88,52 +89,70 @@ stub.image = stub_image
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
class StableDiffusion:
class StableDiffusion(ClsMixin):
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
def __init__(
self,
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
samples: int = 1,
batch_size: int = 1,
steps: int = 30,
):
import diffusers
import torch
use_vae = os.environ["USE_VAE"] == "true"
self.prompt = prompt
self.n_prompt = n_prompt
self.height = height
self.width = width
self.samples = samples
self.batch_size = batch_size
self.steps = steps
self.use_vae = os.environ["USE_VAE"] == "true"
self.upscaler = os.environ["UPSCALER"]
self.use_face_enhancer = os.environ["USE_FACE_ENHANCER"] == "true"
self.use_hires_fix = os.environ["USE_HIRES_FIX"] == "true"
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
if os.path.exists(cache_path):
print(f"The directory '{cache_path}' exists.")
self.cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{cache_path}' does not exist. Download models...")
print(f"The directory '{self.cache_path}' does not exist. Download models...")
download_models()
self.max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
torch.backends.cuda.matmul.allow_tf32 = True
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
self.cache_path,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
)
# TODO: Add support for other schedulers.
# self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
cache_path,
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
self.cache_path,
subfolder="scheduler",
)
if use_vae:
if self.use_vae:
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
self.cache_path,
subfolder="vae",
)
self.pipe.to("cuda")
if os.environ["LORA_NAMES"] != "":
names = os.getenv("LORA_NAMES").split(",")
urls = os.getenv("LORA_DOWNLOAD_URLS").split(",")
names = os.environ["LORA_NAMES"].split(",")
urls = os.environ["LORA_DOWNLOAD_URLS"].split(",")
for name, url in zip(names, urls):
path = os.path.join(BASE_CACHE_PATH_LORA, name)
if os.path.exists(path):
@ -144,8 +163,8 @@ class StableDiffusion:
self.pipe.load_lora_weights(".", weight_name=path)
if os.environ["TEXTUAL_INVERSION_NAMES"] != "":
names = os.getenv("TEXTUAL_INVERSION_NAMES").split(",")
urls = os.getenv("TEXTUAL_INVERSION_DOWNLOAD_URLS").split(",")
names = os.environ["TEXTUAL_INVERSION_NAMES"].split(",")
urls = os.environ["TEXTUAL_INVERSION_DOWNLOAD_URLS"].split(",")
for name, url in zip(names, urls):
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, name)
if os.path.exists(path):
@ -164,7 +183,10 @@ class StableDiffusion:
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
@ -181,34 +203,50 @@ class StableDiffusion:
return max_embeddings_multiples
@method()
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
def run_inference(self, seed: int) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import torch
generator = torch.Generator("cuda").manual_seed(inputs["seed"])
generator = torch.Generator("cuda").manual_seed(seed)
with torch.inference_mode():
with torch.autocast("cuda"):
base_images = self.pipe.text2img(
[inputs["prompt"]] * int(inputs["batch_size"]),
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
height=inputs["height"],
width=inputs["width"],
num_inference_steps=inputs["steps"],
self.prompt * self.batch_size,
negative_prompt=self.n_prompt * self.batch_size,
height=self.height,
width=self.width,
num_inference_steps=self.steps,
guidance_scale=7.5,
max_embeddings_multiples=inputs["max_embeddings_multiples"],
max_embeddings_multiples=self.max_embeddings_multiples,
generator=generator,
).images
if self.upscaler != "":
uplcaled_images = self.upscale(
upscaled = self.upscale(
base_images=base_images,
scale_factor=4,
half_precision=False,
tile=700,
)
base_images.extend(uplcaled_images)
base_images.extend(upscaled)
if self.use_hires_fix:
torch.cuda.empty_cache()
for img in upscaled:
with torch.inference_mode():
with torch.autocast("cuda"):
hires_fixed = self.pipe.img2img(
prompt=self.prompt * self.batch_size,
negative_prompt=self.n_prompt * self.batch_size,
num_inference_steps=self.steps,
strength=0.3,
guidance_scale=7.5,
max_embeddings_multiples=self.max_embeddings_multiples,
generator=generator,
image=img,
).images
base_images.extend(hires_fixed)
torch.cuda.empty_cache()
image_output = []
for image in base_images:
@ -222,7 +260,6 @@ class StableDiffusion:
def upscale(
self,
base_images: list[Image.Image],
scale_factor: float = 4,
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
@ -281,7 +318,7 @@ class StableDiffusion:
torch.cuda.empty_cache()
upscaled_imgs = []
with tqdm(total=len(base_images)) as progress_bar:
for i, img in enumerate(base_images):
for img in base_images:
img = numpy.array(img)
if self.use_face_enhancer:
_, _, enhance_result = face_enhancer.enhance(
@ -300,6 +337,38 @@ class StableDiffusion:
return upscaled_imgs
# TODO: Implement this
# @method()
# def img2img(
# self,
# prompt: str,
# n_prompt: str,
# batch_size: int = 1,
# steps: int = 20,
# strength: float = 0.3,
# max_embeddings_multiples: int = 1,
# # image: Image.Image = None,
# base_images: list[Image.Image],
# ):
# import torch
# torch.cuda.empty_cache()
# for img in base_images:
# with torch.inference_mode():
# with torch.autocast("cuda"):
# hires_fixed = self.pipe.img2img(
# prompt=prompt * batch_size,
# negative_prompt=n_prompt * batch_size,
# num_inference_steps=steps],
# strength=strength,
# guidance_scale=7.5,
# max_embeddings_multiples=max_embeddings_multiples,
# generator=generator,
# image=img,
# ).images
# base_images.extend(hires_fixed)
# torch.cuda.empty_cache()
@stub.local_entrypoint()
def entrypoint(
@ -319,7 +388,26 @@ def entrypoint(
"""
import util
inputs: dict[str, int | str] = {
directory = util.make_directory()
sd = StableDiffusion.remote(
prompt=prompt,
n_prompt=n_prompt,
height=height,
width=width,
batch_size=batch_size,
steps=steps,
)
for i in range(samples):
if seed == -1:
seed_generated = util.generate_seed()
start_time = time.time()
images = sd.run_inference(seed=seed_generated)
util.save_images(directory, images, seed_generated, i)
total_time = time.time() - start_time
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
prompts: dict[str, int | str] = {
"prompt": prompt,
"n_prompt": n_prompt,
"height": height,
@ -327,20 +415,5 @@ def entrypoint(
"samples": samples,
"batch_size": batch_size,
"steps": steps,
"seed": seed,
}
directory = util.make_directory()
sd = StableDiffusion()
inputs["max_embeddings_multiples"] = sd.count_token(p=prompt, n=n_prompt)
for i in range(samples):
if seed == -1:
inputs["seed"] = util.generate_seed()
start_time = time.time()
images = sd.run_inference.call(inputs)
util.save_images(directory, images, int(inputs["seed"]), i)
total_time = time.time() - start_time
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
util.save_prompts(inputs)
util.save_prompts(prompts)