Refactor sd_cli.py
This commit is contained in:
parent
ddb685e4f3
commit
643e0e2ea6
169
sd_cli.py
169
sd_cli.py
@ -6,6 +6,7 @@ import time
|
|||||||
from urllib.request import Request, urlopen
|
from urllib.request import Request, urlopen
|
||||||
|
|
||||||
from modal import Image, Mount, Secret, Stub, method
|
from modal import Image, Mount, Secret, Stub, method
|
||||||
|
from modal.cls import ClsMixin
|
||||||
|
|
||||||
BASE_CACHE_PATH = "/vol/cache"
|
BASE_CACHE_PATH = "/vol/cache"
|
||||||
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
||||||
@ -88,52 +89,70 @@ stub.image = stub_image
|
|||||||
|
|
||||||
|
|
||||||
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
|
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
|
||||||
class StableDiffusion:
|
class StableDiffusion(ClsMixin):
|
||||||
"""
|
"""
|
||||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
def __enter__(self):
|
def __init__(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
height: int = 512,
|
||||||
|
width: int = 512,
|
||||||
|
samples: int = 1,
|
||||||
|
batch_size: int = 1,
|
||||||
|
steps: int = 30,
|
||||||
|
):
|
||||||
import diffusers
|
import diffusers
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
use_vae = os.environ["USE_VAE"] == "true"
|
self.prompt = prompt
|
||||||
|
self.n_prompt = n_prompt
|
||||||
|
self.height = height
|
||||||
|
self.width = width
|
||||||
|
self.samples = samples
|
||||||
|
self.batch_size = batch_size
|
||||||
|
self.steps = steps
|
||||||
|
self.use_vae = os.environ["USE_VAE"] == "true"
|
||||||
self.upscaler = os.environ["UPSCALER"]
|
self.upscaler = os.environ["UPSCALER"]
|
||||||
self.use_face_enhancer = os.environ["USE_FACE_ENHANCER"] == "true"
|
self.use_face_enhancer = os.environ["USE_FACE_ENHANCER"] == "true"
|
||||||
|
self.use_hires_fix = os.environ["USE_HIRES_FIX"] == "true"
|
||||||
|
|
||||||
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
self.cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
|
||||||
if os.path.exists(cache_path):
|
if os.path.exists(self.cache_path):
|
||||||
print(f"The directory '{cache_path}' exists.")
|
print(f"The directory '{self.cache_path}' exists.")
|
||||||
else:
|
else:
|
||||||
print(f"The directory '{cache_path}' does not exist. Download models...")
|
print(f"The directory '{self.cache_path}' does not exist. Download models...")
|
||||||
download_models()
|
download_models()
|
||||||
|
self.max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
||||||
|
|
||||||
torch.backends.cuda.matmul.allow_tf32 = True
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
|
||||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
cache_path,
|
self.cache_path,
|
||||||
custom_pipeline="lpw_stable_diffusion",
|
custom_pipeline="lpw_stable_diffusion",
|
||||||
torch_dtype=torch.float16,
|
torch_dtype=torch.float16,
|
||||||
)
|
)
|
||||||
|
|
||||||
# TODO: Add support for other schedulers.
|
# TODO: Add support for other schedulers.
|
||||||
# self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
|
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
|
||||||
cache_path,
|
self.cache_path,
|
||||||
subfolder="scheduler",
|
subfolder="scheduler",
|
||||||
)
|
)
|
||||||
|
|
||||||
if use_vae:
|
if self.use_vae:
|
||||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||||
cache_path,
|
self.cache_path,
|
||||||
subfolder="vae",
|
subfolder="vae",
|
||||||
)
|
)
|
||||||
|
|
||||||
self.pipe.to("cuda")
|
self.pipe.to("cuda")
|
||||||
|
|
||||||
if os.environ["LORA_NAMES"] != "":
|
if os.environ["LORA_NAMES"] != "":
|
||||||
names = os.getenv("LORA_NAMES").split(",")
|
names = os.environ["LORA_NAMES"].split(",")
|
||||||
urls = os.getenv("LORA_DOWNLOAD_URLS").split(",")
|
urls = os.environ["LORA_DOWNLOAD_URLS"].split(",")
|
||||||
for name, url in zip(names, urls):
|
for name, url in zip(names, urls):
|
||||||
path = os.path.join(BASE_CACHE_PATH_LORA, name)
|
path = os.path.join(BASE_CACHE_PATH_LORA, name)
|
||||||
if os.path.exists(path):
|
if os.path.exists(path):
|
||||||
@ -144,8 +163,8 @@ class StableDiffusion:
|
|||||||
self.pipe.load_lora_weights(".", weight_name=path)
|
self.pipe.load_lora_weights(".", weight_name=path)
|
||||||
|
|
||||||
if os.environ["TEXTUAL_INVERSION_NAMES"] != "":
|
if os.environ["TEXTUAL_INVERSION_NAMES"] != "":
|
||||||
names = os.getenv("TEXTUAL_INVERSION_NAMES").split(",")
|
names = os.environ["TEXTUAL_INVERSION_NAMES"].split(",")
|
||||||
urls = os.getenv("TEXTUAL_INVERSION_DOWNLOAD_URLS").split(",")
|
urls = os.environ["TEXTUAL_INVERSION_DOWNLOAD_URLS"].split(",")
|
||||||
for name, url in zip(names, urls):
|
for name, url in zip(names, urls):
|
||||||
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, name)
|
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, name)
|
||||||
if os.path.exists(path):
|
if os.path.exists(path):
|
||||||
@ -164,7 +183,10 @@ class StableDiffusion:
|
|||||||
"""
|
"""
|
||||||
from transformers import CLIPTokenizer
|
from transformers import CLIPTokenizer
|
||||||
|
|
||||||
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14")
|
tokenizer = CLIPTokenizer.from_pretrained(
|
||||||
|
self.cache_path,
|
||||||
|
subfolder="tokenizer",
|
||||||
|
)
|
||||||
token_size_p = len(tokenizer.tokenize(p))
|
token_size_p = len(tokenizer.tokenize(p))
|
||||||
token_size_n = len(tokenizer.tokenize(n))
|
token_size_n = len(tokenizer.tokenize(n))
|
||||||
token_size = token_size_p
|
token_size = token_size_p
|
||||||
@ -181,34 +203,50 @@ class StableDiffusion:
|
|||||||
return max_embeddings_multiples
|
return max_embeddings_multiples
|
||||||
|
|
||||||
@method()
|
@method()
|
||||||
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
|
def run_inference(self, seed: int) -> list[bytes]:
|
||||||
"""
|
"""
|
||||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||||
"""
|
"""
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
generator = torch.Generator("cuda").manual_seed(inputs["seed"])
|
generator = torch.Generator("cuda").manual_seed(seed)
|
||||||
with torch.inference_mode():
|
with torch.inference_mode():
|
||||||
with torch.autocast("cuda"):
|
with torch.autocast("cuda"):
|
||||||
base_images = self.pipe.text2img(
|
base_images = self.pipe.text2img(
|
||||||
[inputs["prompt"]] * int(inputs["batch_size"]),
|
self.prompt * self.batch_size,
|
||||||
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
|
negative_prompt=self.n_prompt * self.batch_size,
|
||||||
height=inputs["height"],
|
height=self.height,
|
||||||
width=inputs["width"],
|
width=self.width,
|
||||||
num_inference_steps=inputs["steps"],
|
num_inference_steps=self.steps,
|
||||||
guidance_scale=7.5,
|
guidance_scale=7.5,
|
||||||
max_embeddings_multiples=inputs["max_embeddings_multiples"],
|
max_embeddings_multiples=self.max_embeddings_multiples,
|
||||||
generator=generator,
|
generator=generator,
|
||||||
).images
|
).images
|
||||||
|
|
||||||
if self.upscaler != "":
|
if self.upscaler != "":
|
||||||
uplcaled_images = self.upscale(
|
upscaled = self.upscale(
|
||||||
base_images=base_images,
|
base_images=base_images,
|
||||||
scale_factor=4,
|
|
||||||
half_precision=False,
|
half_precision=False,
|
||||||
tile=700,
|
tile=700,
|
||||||
)
|
)
|
||||||
base_images.extend(uplcaled_images)
|
base_images.extend(upscaled)
|
||||||
|
if self.use_hires_fix:
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
for img in upscaled:
|
||||||
|
with torch.inference_mode():
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
hires_fixed = self.pipe.img2img(
|
||||||
|
prompt=self.prompt * self.batch_size,
|
||||||
|
negative_prompt=self.n_prompt * self.batch_size,
|
||||||
|
num_inference_steps=self.steps,
|
||||||
|
strength=0.3,
|
||||||
|
guidance_scale=7.5,
|
||||||
|
max_embeddings_multiples=self.max_embeddings_multiples,
|
||||||
|
generator=generator,
|
||||||
|
image=img,
|
||||||
|
).images
|
||||||
|
base_images.extend(hires_fixed)
|
||||||
|
torch.cuda.empty_cache()
|
||||||
|
|
||||||
image_output = []
|
image_output = []
|
||||||
for image in base_images:
|
for image in base_images:
|
||||||
@ -222,7 +260,6 @@ class StableDiffusion:
|
|||||||
def upscale(
|
def upscale(
|
||||||
self,
|
self,
|
||||||
base_images: list[Image.Image],
|
base_images: list[Image.Image],
|
||||||
scale_factor: float = 4,
|
|
||||||
half_precision: bool = False,
|
half_precision: bool = False,
|
||||||
tile: int = 0,
|
tile: int = 0,
|
||||||
tile_pad: int = 10,
|
tile_pad: int = 10,
|
||||||
@ -281,7 +318,7 @@ class StableDiffusion:
|
|||||||
torch.cuda.empty_cache()
|
torch.cuda.empty_cache()
|
||||||
upscaled_imgs = []
|
upscaled_imgs = []
|
||||||
with tqdm(total=len(base_images)) as progress_bar:
|
with tqdm(total=len(base_images)) as progress_bar:
|
||||||
for i, img in enumerate(base_images):
|
for img in base_images:
|
||||||
img = numpy.array(img)
|
img = numpy.array(img)
|
||||||
if self.use_face_enhancer:
|
if self.use_face_enhancer:
|
||||||
_, _, enhance_result = face_enhancer.enhance(
|
_, _, enhance_result = face_enhancer.enhance(
|
||||||
@ -300,6 +337,38 @@ class StableDiffusion:
|
|||||||
|
|
||||||
return upscaled_imgs
|
return upscaled_imgs
|
||||||
|
|
||||||
|
# TODO: Implement this
|
||||||
|
# @method()
|
||||||
|
# def img2img(
|
||||||
|
# self,
|
||||||
|
# prompt: str,
|
||||||
|
# n_prompt: str,
|
||||||
|
# batch_size: int = 1,
|
||||||
|
# steps: int = 20,
|
||||||
|
# strength: float = 0.3,
|
||||||
|
# max_embeddings_multiples: int = 1,
|
||||||
|
# # image: Image.Image = None,
|
||||||
|
# base_images: list[Image.Image],
|
||||||
|
# ):
|
||||||
|
# import torch
|
||||||
|
|
||||||
|
# torch.cuda.empty_cache()
|
||||||
|
# for img in base_images:
|
||||||
|
# with torch.inference_mode():
|
||||||
|
# with torch.autocast("cuda"):
|
||||||
|
# hires_fixed = self.pipe.img2img(
|
||||||
|
# prompt=prompt * batch_size,
|
||||||
|
# negative_prompt=n_prompt * batch_size,
|
||||||
|
# num_inference_steps=steps],
|
||||||
|
# strength=strength,
|
||||||
|
# guidance_scale=7.5,
|
||||||
|
# max_embeddings_multiples=max_embeddings_multiples,
|
||||||
|
# generator=generator,
|
||||||
|
# image=img,
|
||||||
|
# ).images
|
||||||
|
# base_images.extend(hires_fixed)
|
||||||
|
# torch.cuda.empty_cache()
|
||||||
|
|
||||||
|
|
||||||
@stub.local_entrypoint()
|
@stub.local_entrypoint()
|
||||||
def entrypoint(
|
def entrypoint(
|
||||||
@ -319,7 +388,26 @@ def entrypoint(
|
|||||||
"""
|
"""
|
||||||
import util
|
import util
|
||||||
|
|
||||||
inputs: dict[str, int | str] = {
|
directory = util.make_directory()
|
||||||
|
|
||||||
|
sd = StableDiffusion.remote(
|
||||||
|
prompt=prompt,
|
||||||
|
n_prompt=n_prompt,
|
||||||
|
height=height,
|
||||||
|
width=width,
|
||||||
|
batch_size=batch_size,
|
||||||
|
steps=steps,
|
||||||
|
)
|
||||||
|
for i in range(samples):
|
||||||
|
if seed == -1:
|
||||||
|
seed_generated = util.generate_seed()
|
||||||
|
start_time = time.time()
|
||||||
|
images = sd.run_inference(seed=seed_generated)
|
||||||
|
util.save_images(directory, images, seed_generated, i)
|
||||||
|
total_time = time.time() - start_time
|
||||||
|
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
||||||
|
|
||||||
|
prompts: dict[str, int | str] = {
|
||||||
"prompt": prompt,
|
"prompt": prompt,
|
||||||
"n_prompt": n_prompt,
|
"n_prompt": n_prompt,
|
||||||
"height": height,
|
"height": height,
|
||||||
@ -327,20 +415,5 @@ def entrypoint(
|
|||||||
"samples": samples,
|
"samples": samples,
|
||||||
"batch_size": batch_size,
|
"batch_size": batch_size,
|
||||||
"steps": steps,
|
"steps": steps,
|
||||||
"seed": seed,
|
|
||||||
}
|
}
|
||||||
|
util.save_prompts(prompts)
|
||||||
directory = util.make_directory()
|
|
||||||
|
|
||||||
sd = StableDiffusion()
|
|
||||||
inputs["max_embeddings_multiples"] = sd.count_token(p=prompt, n=n_prompt)
|
|
||||||
for i in range(samples):
|
|
||||||
if seed == -1:
|
|
||||||
inputs["seed"] = util.generate_seed()
|
|
||||||
start_time = time.time()
|
|
||||||
images = sd.run_inference.call(inputs)
|
|
||||||
util.save_images(directory, images, int(inputs["seed"]), i)
|
|
||||||
total_time = time.time() - start_time
|
|
||||||
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
|
|
||||||
|
|
||||||
util.save_prompts(inputs)
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user