Separate setup.py.
This commit is contained in:
parent
8df4050b28
commit
77ebc71c69
2
Makefile
2
Makefile
@ -1,5 +1,5 @@
|
|||||||
deploy:
|
deploy:
|
||||||
modal deploy ./setup_files/setup.py
|
cd ./setup_files && modal deploy main.py
|
||||||
|
|
||||||
# `--upscaler` is a name of upscaler you want to use.
|
# `--upscaler` is a name of upscaler you want to use.
|
||||||
# You can use upscalers the below:
|
# You can use upscalers the below:
|
||||||
|
|||||||
289
setup_files/main.py
Normal file
289
setup_files/main.py
Normal file
@ -0,0 +1,289 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
|
||||||
|
import io
|
||||||
|
import os
|
||||||
|
|
||||||
|
import diffusers
|
||||||
|
import PIL.Image
|
||||||
|
import torch
|
||||||
|
from modal import Secret, method
|
||||||
|
from modal.cls import ClsMixin
|
||||||
|
|
||||||
|
from setup import (BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET,
|
||||||
|
BASE_CACHE_PATH_LORA, BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||||
|
stub)
|
||||||
|
|
||||||
|
|
||||||
|
@stub.cls(
|
||||||
|
gpu="A10G",
|
||||||
|
secrets=[Secret.from_dotenv(__file__)],
|
||||||
|
)
|
||||||
|
class StableDiffusion(ClsMixin):
|
||||||
|
"""
|
||||||
|
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
import yaml
|
||||||
|
|
||||||
|
config = {}
|
||||||
|
with open("/config.yml", "r") as file:
|
||||||
|
config = yaml.safe_load(file)
|
||||||
|
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
||||||
|
if os.path.exists(self.cache_path):
|
||||||
|
print(f"The directory '{self.cache_path}' exists.")
|
||||||
|
else:
|
||||||
|
print(f"The directory '{self.cache_path}' does not exist.")
|
||||||
|
|
||||||
|
torch.cuda.memory._set_allocator_settings("max_split_size_mb:256")
|
||||||
|
|
||||||
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
|
self.cache_path,
|
||||||
|
custom_pipeline="lpw_stable_diffusion",
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
)
|
||||||
|
|
||||||
|
# TODO: Add support for other schedulers.
|
||||||
|
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
|
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
|
||||||
|
self.cache_path,
|
||||||
|
subfolder="scheduler",
|
||||||
|
)
|
||||||
|
|
||||||
|
vae = config.get("vae")
|
||||||
|
if vae is not None:
|
||||||
|
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||||
|
self.cache_path,
|
||||||
|
subfolder="vae",
|
||||||
|
)
|
||||||
|
self.pipe.to("cuda")
|
||||||
|
|
||||||
|
loras = config.get("loras")
|
||||||
|
if loras is not None:
|
||||||
|
for lora in loras:
|
||||||
|
path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
|
||||||
|
if os.path.exists(path):
|
||||||
|
print(f"The directory '{path}' exists.")
|
||||||
|
else:
|
||||||
|
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
|
||||||
|
self.pipe.load_lora_weights(".", weight_name=path)
|
||||||
|
|
||||||
|
textual_inversions = config.get("textual_inversions")
|
||||||
|
if textual_inversions is not None:
|
||||||
|
for textual_inversion in textual_inversions:
|
||||||
|
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
|
||||||
|
if os.path.exists(path):
|
||||||
|
print(f"The directory '{path}' exists.")
|
||||||
|
else:
|
||||||
|
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
|
||||||
|
self.pipe.load_textual_inversion(path)
|
||||||
|
|
||||||
|
self.pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
|
||||||
|
# TODO: Repair the controlnet loading.
|
||||||
|
controlnets = config.get("controlnets")
|
||||||
|
if controlnets is not None:
|
||||||
|
for controlnet in controlnets:
|
||||||
|
path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
|
||||||
|
controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
|
||||||
|
self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
|
||||||
|
self.cache_path,
|
||||||
|
controlnet=controlnet,
|
||||||
|
custom_pipeline="lpw_stable_diffusion",
|
||||||
|
scheduler=self.pipe.scheduler,
|
||||||
|
vae=self.pipe.vae,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
)
|
||||||
|
self.controlnet_pipe.to("cuda")
|
||||||
|
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def count_token(self, p: str, n: str) -> int:
|
||||||
|
"""
|
||||||
|
Count the number of tokens in the prompt and negative prompt.
|
||||||
|
"""
|
||||||
|
from transformers import CLIPTokenizer
|
||||||
|
|
||||||
|
tokenizer = CLIPTokenizer.from_pretrained(
|
||||||
|
self.cache_path,
|
||||||
|
subfolder="tokenizer",
|
||||||
|
)
|
||||||
|
token_size_p = len(tokenizer.tokenize(p))
|
||||||
|
token_size_n = len(tokenizer.tokenize(n))
|
||||||
|
token_size = token_size_p
|
||||||
|
if token_size_p <= token_size_n:
|
||||||
|
token_size = token_size_n
|
||||||
|
|
||||||
|
max_embeddings_multiples = 1
|
||||||
|
max_length = tokenizer.model_max_length - 2
|
||||||
|
if token_size > max_length:
|
||||||
|
max_embeddings_multiples = token_size // max_length + 1
|
||||||
|
|
||||||
|
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
|
||||||
|
|
||||||
|
return max_embeddings_multiples
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def run_inference(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
height: int = 512,
|
||||||
|
width: int = 512,
|
||||||
|
samples: int = 1,
|
||||||
|
batch_size: int = 1,
|
||||||
|
steps: int = 30,
|
||||||
|
seed: int = 1,
|
||||||
|
upscaler: str = "",
|
||||||
|
use_face_enhancer: bool = False,
|
||||||
|
fix_by_controlnet_tile: bool = False,
|
||||||
|
) -> list[bytes]:
|
||||||
|
"""
|
||||||
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||||
|
"""
|
||||||
|
|
||||||
|
max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
||||||
|
generator = torch.Generator("cuda").manual_seed(seed)
|
||||||
|
with torch.inference_mode():
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
generated_images = self.pipe.text2img(
|
||||||
|
prompt * batch_size,
|
||||||
|
negative_prompt=n_prompt * batch_size,
|
||||||
|
height=height,
|
||||||
|
width=width,
|
||||||
|
num_inference_steps=steps,
|
||||||
|
guidance_scale=7.5,
|
||||||
|
max_embeddings_multiples=max_embeddings_multiples,
|
||||||
|
generator=generator,
|
||||||
|
).images
|
||||||
|
|
||||||
|
base_images = generated_images
|
||||||
|
|
||||||
|
"""
|
||||||
|
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
||||||
|
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||||
|
"""
|
||||||
|
if fix_by_controlnet_tile:
|
||||||
|
for image in base_images:
|
||||||
|
image = self.resize_image(image=image, scale_factor=2)
|
||||||
|
with torch.inference_mode():
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
fixed_by_controlnet = self.controlnet_pipe(
|
||||||
|
prompt=prompt * batch_size,
|
||||||
|
negative_prompt=n_prompt * batch_size,
|
||||||
|
num_inference_steps=steps,
|
||||||
|
strength=0.3,
|
||||||
|
guidance_scale=7.5,
|
||||||
|
max_embeddings_multiples=max_embeddings_multiples,
|
||||||
|
generator=generator,
|
||||||
|
image=image,
|
||||||
|
).images
|
||||||
|
generated_images.extend(fixed_by_controlnet)
|
||||||
|
base_images = fixed_by_controlnet
|
||||||
|
|
||||||
|
if upscaler != "":
|
||||||
|
upscaled = self.upscale(
|
||||||
|
base_images=base_images,
|
||||||
|
half_precision=False,
|
||||||
|
tile=700,
|
||||||
|
upscaler=upscaler,
|
||||||
|
use_face_enhancer=use_face_enhancer,
|
||||||
|
)
|
||||||
|
generated_images.extend(upscaled)
|
||||||
|
|
||||||
|
image_output = []
|
||||||
|
for image in generated_images:
|
||||||
|
with io.BytesIO() as buf:
|
||||||
|
image.save(buf, format="PNG")
|
||||||
|
image_output.append(buf.getvalue())
|
||||||
|
|
||||||
|
return image_output
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
|
||||||
|
image = image.convert("RGB")
|
||||||
|
width, height = image.size
|
||||||
|
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||||
|
return img
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def upscale(
|
||||||
|
self,
|
||||||
|
base_images: list[PIL.Image],
|
||||||
|
half_precision: bool = False,
|
||||||
|
tile: int = 0,
|
||||||
|
tile_pad: int = 10,
|
||||||
|
pre_pad: int = 0,
|
||||||
|
upscaler: str = "",
|
||||||
|
use_face_enhancer: bool = False,
|
||||||
|
) -> list[PIL.Image]:
|
||||||
|
"""
|
||||||
|
Upscale the generated images by the upscaler when `upscaler` is selected.
|
||||||
|
The upscaler can be selected from the following list:
|
||||||
|
- `RealESRGAN_x4plus`
|
||||||
|
- `RealESRNet_x4plus`
|
||||||
|
- `RealESRGAN_x4plus_anime_6B`
|
||||||
|
- `RealESRGAN_x2plus`
|
||||||
|
https://github.com/xinntao/Real-ESRGAN
|
||||||
|
"""
|
||||||
|
import numpy
|
||||||
|
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||||
|
from gfpgan import GFPGANer
|
||||||
|
from realesrgan import RealESRGANer
|
||||||
|
from tqdm import tqdm
|
||||||
|
|
||||||
|
model_name = upscaler
|
||||||
|
if model_name == "RealESRGAN_x4plus":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||||
|
netscale = 4
|
||||||
|
elif model_name == "RealESRNet_x4plus":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||||
|
netscale = 4
|
||||||
|
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||||
|
netscale = 4
|
||||||
|
elif model_name == "RealESRGAN_x2plus":
|
||||||
|
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||||
|
netscale = 2
|
||||||
|
else:
|
||||||
|
raise NotImplementedError("Model name not supported")
|
||||||
|
|
||||||
|
upsampler = RealESRGANer(
|
||||||
|
scale=netscale,
|
||||||
|
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||||
|
dni_weight=None,
|
||||||
|
model=upscale_model,
|
||||||
|
tile=tile,
|
||||||
|
tile_pad=tile_pad,
|
||||||
|
pre_pad=pre_pad,
|
||||||
|
half=half_precision,
|
||||||
|
gpu_id=None,
|
||||||
|
)
|
||||||
|
|
||||||
|
if use_face_enhancer:
|
||||||
|
face_enhancer = GFPGANer(
|
||||||
|
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
||||||
|
upscale=netscale,
|
||||||
|
arch="clean",
|
||||||
|
channel_multiplier=2,
|
||||||
|
bg_upsampler=upsampler,
|
||||||
|
)
|
||||||
|
|
||||||
|
upscaled_imgs = []
|
||||||
|
with tqdm(total=len(base_images)) as progress_bar:
|
||||||
|
for img in base_images:
|
||||||
|
img = numpy.array(img)
|
||||||
|
if use_face_enhancer:
|
||||||
|
_, _, enhance_result = face_enhancer.enhance(
|
||||||
|
img,
|
||||||
|
has_aligned=False,
|
||||||
|
only_center_face=False,
|
||||||
|
paste_back=True,
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
enhance_result, _ = upsampler.enhance(img)
|
||||||
|
|
||||||
|
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
||||||
|
progress_bar.update(1)
|
||||||
|
|
||||||
|
return upscaled_imgs
|
||||||
@ -1,13 +1,9 @@
|
|||||||
from __future__ import annotations
|
from __future__ import annotations
|
||||||
|
|
||||||
import io
|
|
||||||
import os
|
import os
|
||||||
from urllib.request import Request, urlopen
|
|
||||||
|
|
||||||
import diffusers
|
import diffusers
|
||||||
import yaml
|
from modal import Image, Mount, Secret, Stub
|
||||||
from modal import Image, Mount, Secret, Stub, method
|
|
||||||
from modal.cls import ClsMixin
|
|
||||||
|
|
||||||
BASE_CACHE_PATH = "/vol/cache"
|
BASE_CACHE_PATH = "/vol/cache"
|
||||||
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
||||||
@ -19,6 +15,8 @@ def download_file(url, file_name, file_path):
|
|||||||
"""
|
"""
|
||||||
Download files.
|
Download files.
|
||||||
"""
|
"""
|
||||||
|
from urllib.request import Request, urlopen
|
||||||
|
|
||||||
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
|
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
|
||||||
downloaded = urlopen(req).read()
|
downloaded = urlopen(req).read()
|
||||||
dir_names = os.path.join(file_path, file_name)
|
dir_names = os.path.join(file_path, file_name)
|
||||||
@ -70,6 +68,8 @@ def build_image():
|
|||||||
"""
|
"""
|
||||||
Build the Docker image.
|
Build the Docker image.
|
||||||
"""
|
"""
|
||||||
|
import yaml
|
||||||
|
|
||||||
token = os.environ["HUGGING_FACE_TOKEN"]
|
token = os.environ["HUGGING_FACE_TOKEN"]
|
||||||
config = {}
|
config = {}
|
||||||
with open("/config.yml", "r") as file:
|
with open("/config.yml", "r") as file:
|
||||||
@ -109,302 +109,16 @@ def build_image():
|
|||||||
|
|
||||||
stub = Stub("stable-diffusion-cli")
|
stub = Stub("stable-diffusion-cli")
|
||||||
base_stub = Image.from_dockerfile(
|
base_stub = Image.from_dockerfile(
|
||||||
path="./setup_files/Dockerfile",
|
path="Dockerfile",
|
||||||
context_mount=Mount.from_local_file("./setup_files/requirements.txt"),
|
context_mount=Mount.from_local_file("requirements.txt"),
|
||||||
)
|
)
|
||||||
stub.image = base_stub.extend(
|
stub.image = base_stub.extend(
|
||||||
dockerfile_commands=[
|
dockerfile_commands=[
|
||||||
"FROM base",
|
"FROM base",
|
||||||
"COPY ./config.yml /",
|
"COPY config.yml /",
|
||||||
],
|
],
|
||||||
context_mount=Mount.from_local_file("./setup_files/config.yml"),
|
context_mount=Mount.from_local_file("config.yml"),
|
||||||
).run_function(
|
).run_function(
|
||||||
build_image,
|
build_image,
|
||||||
secrets=[Secret.from_dotenv(__file__)],
|
secrets=[Secret.from_dotenv(__file__)],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
@stub.cls(
|
|
||||||
gpu="A10G",
|
|
||||||
secrets=[Secret.from_dotenv(__file__)],
|
|
||||||
)
|
|
||||||
class StableDiffusion(ClsMixin):
|
|
||||||
"""
|
|
||||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __enter__(self):
|
|
||||||
import torch
|
|
||||||
|
|
||||||
config = {}
|
|
||||||
with open("/config.yml", "r") as file:
|
|
||||||
config = yaml.safe_load(file)
|
|
||||||
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
|
||||||
if os.path.exists(self.cache_path):
|
|
||||||
print(f"The directory '{self.cache_path}' exists.")
|
|
||||||
else:
|
|
||||||
print(f"The directory '{self.cache_path}' does not exist.")
|
|
||||||
|
|
||||||
torch.cuda.memory._set_allocator_settings("max_split_size_mb:256")
|
|
||||||
|
|
||||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
|
||||||
self.cache_path,
|
|
||||||
custom_pipeline="lpw_stable_diffusion",
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
)
|
|
||||||
|
|
||||||
# TODO: Add support for other schedulers.
|
|
||||||
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
|
||||||
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
|
|
||||||
self.cache_path,
|
|
||||||
subfolder="scheduler",
|
|
||||||
)
|
|
||||||
|
|
||||||
vae = config.get("vae")
|
|
||||||
if vae is not None:
|
|
||||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
|
||||||
self.cache_path,
|
|
||||||
subfolder="vae",
|
|
||||||
)
|
|
||||||
self.pipe.to("cuda")
|
|
||||||
|
|
||||||
loras = config.get("loras")
|
|
||||||
if loras is not None:
|
|
||||||
for lora in loras:
|
|
||||||
path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
|
|
||||||
if os.path.exists(path):
|
|
||||||
print(f"The directory '{path}' exists.")
|
|
||||||
else:
|
|
||||||
print(f"The directory '{path}' does not exist. Download it...")
|
|
||||||
download_file(lora["download_url"], lora["name"], BASE_CACHE_PATH_LORA)
|
|
||||||
self.pipe.load_lora_weights(".", weight_name=path)
|
|
||||||
|
|
||||||
textual_inversions = config.get("textual_inversions")
|
|
||||||
if textual_inversions is not None:
|
|
||||||
for textual_inversion in textual_inversions:
|
|
||||||
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
|
|
||||||
if os.path.exists(path):
|
|
||||||
print(f"The directory '{path}' exists.")
|
|
||||||
else:
|
|
||||||
print(f"The directory '{path}' does not exist. Download it...")
|
|
||||||
download_file(
|
|
||||||
textual_inversion["download_url"],
|
|
||||||
textual_inversion["name"],
|
|
||||||
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
|
||||||
)
|
|
||||||
self.pipe.load_textual_inversion(path)
|
|
||||||
|
|
||||||
self.pipe.enable_xformers_memory_efficient_attention()
|
|
||||||
|
|
||||||
# TODO: Repair the controlnet loading.
|
|
||||||
controlnets = config.get("controlnets")
|
|
||||||
if controlnets is not None:
|
|
||||||
for controlnet in controlnets:
|
|
||||||
path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
|
|
||||||
controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
|
|
||||||
self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
|
|
||||||
self.cache_path,
|
|
||||||
controlnet=controlnet,
|
|
||||||
custom_pipeline="lpw_stable_diffusion",
|
|
||||||
scheduler=self.pipe.scheduler,
|
|
||||||
vae=self.pipe.vae,
|
|
||||||
torch_dtype=torch.float16,
|
|
||||||
)
|
|
||||||
self.controlnet_pipe.to("cuda")
|
|
||||||
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
|
||||||
|
|
||||||
@method()
|
|
||||||
def count_token(self, p: str, n: str) -> int:
|
|
||||||
"""
|
|
||||||
Count the number of tokens in the prompt and negative prompt.
|
|
||||||
"""
|
|
||||||
from transformers import CLIPTokenizer
|
|
||||||
|
|
||||||
tokenizer = CLIPTokenizer.from_pretrained(
|
|
||||||
self.cache_path,
|
|
||||||
subfolder="tokenizer",
|
|
||||||
)
|
|
||||||
token_size_p = len(tokenizer.tokenize(p))
|
|
||||||
token_size_n = len(tokenizer.tokenize(n))
|
|
||||||
token_size = token_size_p
|
|
||||||
if token_size_p <= token_size_n:
|
|
||||||
token_size = token_size_n
|
|
||||||
|
|
||||||
max_embeddings_multiples = 1
|
|
||||||
max_length = tokenizer.model_max_length - 2
|
|
||||||
if token_size > max_length:
|
|
||||||
max_embeddings_multiples = token_size // max_length + 1
|
|
||||||
|
|
||||||
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
|
|
||||||
|
|
||||||
return max_embeddings_multiples
|
|
||||||
|
|
||||||
@method()
|
|
||||||
def run_inference(
|
|
||||||
self,
|
|
||||||
prompt: str,
|
|
||||||
n_prompt: str,
|
|
||||||
height: int = 512,
|
|
||||||
width: int = 512,
|
|
||||||
samples: int = 1,
|
|
||||||
batch_size: int = 1,
|
|
||||||
steps: int = 30,
|
|
||||||
seed: int = 1,
|
|
||||||
upscaler: str = "",
|
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
fix_by_controlnet_tile: bool = False,
|
|
||||||
) -> list[bytes]:
|
|
||||||
"""
|
|
||||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
|
||||||
"""
|
|
||||||
import torch
|
|
||||||
|
|
||||||
max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
|
||||||
generator = torch.Generator("cuda").manual_seed(seed)
|
|
||||||
with torch.inference_mode():
|
|
||||||
with torch.autocast("cuda"):
|
|
||||||
generated_images = self.pipe.text2img(
|
|
||||||
prompt * batch_size,
|
|
||||||
negative_prompt=n_prompt * batch_size,
|
|
||||||
height=height,
|
|
||||||
width=width,
|
|
||||||
num_inference_steps=steps,
|
|
||||||
guidance_scale=7.5,
|
|
||||||
max_embeddings_multiples=max_embeddings_multiples,
|
|
||||||
generator=generator,
|
|
||||||
).images
|
|
||||||
|
|
||||||
base_images = generated_images
|
|
||||||
|
|
||||||
"""
|
|
||||||
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
|
||||||
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
|
||||||
"""
|
|
||||||
if fix_by_controlnet_tile:
|
|
||||||
for image in base_images:
|
|
||||||
image = self.resize_image(image=image, scale_factor=2)
|
|
||||||
with torch.inference_mode():
|
|
||||||
with torch.autocast("cuda"):
|
|
||||||
fixed_by_controlnet = self.controlnet_pipe(
|
|
||||||
prompt=prompt * batch_size,
|
|
||||||
negative_prompt=n_prompt * batch_size,
|
|
||||||
num_inference_steps=steps,
|
|
||||||
strength=0.3,
|
|
||||||
guidance_scale=7.5,
|
|
||||||
max_embeddings_multiples=max_embeddings_multiples,
|
|
||||||
generator=generator,
|
|
||||||
image=image,
|
|
||||||
).images
|
|
||||||
generated_images.extend(fixed_by_controlnet)
|
|
||||||
base_images = fixed_by_controlnet
|
|
||||||
|
|
||||||
if upscaler != "":
|
|
||||||
upscaled = self.upscale(
|
|
||||||
base_images=base_images,
|
|
||||||
half_precision=False,
|
|
||||||
tile=700,
|
|
||||||
upscaler=upscaler,
|
|
||||||
use_face_enhancer=use_face_enhancer,
|
|
||||||
)
|
|
||||||
generated_images.extend(upscaled)
|
|
||||||
|
|
||||||
image_output = []
|
|
||||||
for image in generated_images:
|
|
||||||
with io.BytesIO() as buf:
|
|
||||||
image.save(buf, format="PNG")
|
|
||||||
image_output.append(buf.getvalue())
|
|
||||||
|
|
||||||
return image_output
|
|
||||||
|
|
||||||
@method()
|
|
||||||
def resize_image(self, image: Image.Image, scale_factor: int) -> Image.Image:
|
|
||||||
from PIL import Image
|
|
||||||
|
|
||||||
image = image.convert("RGB")
|
|
||||||
width, height = image.size
|
|
||||||
img = image.resize((width * scale_factor, height * scale_factor), resample=Image.LANCZOS)
|
|
||||||
return img
|
|
||||||
|
|
||||||
@method()
|
|
||||||
def upscale(
|
|
||||||
self,
|
|
||||||
base_images: list[Image.Image],
|
|
||||||
half_precision: bool = False,
|
|
||||||
tile: int = 0,
|
|
||||||
tile_pad: int = 10,
|
|
||||||
pre_pad: int = 0,
|
|
||||||
upscaler: str = "",
|
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
) -> list[Image.Image]:
|
|
||||||
"""
|
|
||||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
|
||||||
The upscaler can be selected from the following list:
|
|
||||||
- `RealESRGAN_x4plus`
|
|
||||||
- `RealESRNet_x4plus`
|
|
||||||
- `RealESRGAN_x4plus_anime_6B`
|
|
||||||
- `RealESRGAN_x2plus`
|
|
||||||
https://github.com/xinntao/Real-ESRGAN
|
|
||||||
"""
|
|
||||||
import numpy
|
|
||||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
||||||
from PIL import Image
|
|
||||||
from realesrgan import RealESRGANer
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
model_name = upscaler
|
|
||||||
if model_name == "RealESRGAN_x4plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRNet_x4plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRGAN_x2plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
||||||
netscale = 2
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Model name not supported")
|
|
||||||
|
|
||||||
upsampler = RealESRGANer(
|
|
||||||
scale=netscale,
|
|
||||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
|
||||||
dni_weight=None,
|
|
||||||
model=upscale_model,
|
|
||||||
tile=tile,
|
|
||||||
tile_pad=tile_pad,
|
|
||||||
pre_pad=pre_pad,
|
|
||||||
half=half_precision,
|
|
||||||
gpu_id=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
from gfpgan import GFPGANer
|
|
||||||
|
|
||||||
if use_face_enhancer:
|
|
||||||
face_enhancer = GFPGANer(
|
|
||||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
|
||||||
upscale=netscale,
|
|
||||||
arch="clean",
|
|
||||||
channel_multiplier=2,
|
|
||||||
bg_upsampler=upsampler,
|
|
||||||
)
|
|
||||||
|
|
||||||
upscaled_imgs = []
|
|
||||||
with tqdm(total=len(base_images)) as progress_bar:
|
|
||||||
for img in base_images:
|
|
||||||
img = numpy.array(img)
|
|
||||||
if use_face_enhancer:
|
|
||||||
_, _, enhance_result = face_enhancer.enhance(
|
|
||||||
img,
|
|
||||||
has_aligned=False,
|
|
||||||
only_center_face=False,
|
|
||||||
paste_back=True,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
enhance_result, _ = upsampler.enhance(img)
|
|
||||||
|
|
||||||
upscaled_imgs.append(Image.fromarray(enhance_result))
|
|
||||||
progress_bar.update(1)
|
|
||||||
|
|
||||||
return upscaled_imgs
|
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user