Separate setup.py.
This commit is contained in:
parent
8df4050b28
commit
77ebc71c69
2
Makefile
2
Makefile
@ -1,5 +1,5 @@
|
||||
deploy:
|
||||
modal deploy ./setup_files/setup.py
|
||||
cd ./setup_files && modal deploy main.py
|
||||
|
||||
# `--upscaler` is a name of upscaler you want to use.
|
||||
# You can use upscalers the below:
|
||||
|
||||
289
setup_files/main.py
Normal file
289
setup_files/main.py
Normal file
@ -0,0 +1,289 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import os
|
||||
|
||||
import diffusers
|
||||
import PIL.Image
|
||||
import torch
|
||||
from modal import Secret, method
|
||||
from modal.cls import ClsMixin
|
||||
|
||||
from setup import (BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET,
|
||||
BASE_CACHE_PATH_LORA, BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
stub)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
gpu="A10G",
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
class StableDiffusion(ClsMixin):
|
||||
"""
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
import yaml
|
||||
|
||||
config = {}
|
||||
with open("/config.yml", "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
||||
if os.path.exists(self.cache_path):
|
||||
print(f"The directory '{self.cache_path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{self.cache_path}' does not exist.")
|
||||
|
||||
torch.cuda.memory._set_allocator_settings("max_split_size_mb:256")
|
||||
|
||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
custom_pipeline="lpw_stable_diffusion",
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
# TODO: Add support for other schedulers.
|
||||
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
|
||||
vae = config.get("vae")
|
||||
if vae is not None:
|
||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="vae",
|
||||
)
|
||||
self.pipe.to("cuda")
|
||||
|
||||
loras = config.get("loras")
|
||||
if loras is not None:
|
||||
for lora in loras:
|
||||
path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
|
||||
if os.path.exists(path):
|
||||
print(f"The directory '{path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
|
||||
self.pipe.load_lora_weights(".", weight_name=path)
|
||||
|
||||
textual_inversions = config.get("textual_inversions")
|
||||
if textual_inversions is not None:
|
||||
for textual_inversion in textual_inversions:
|
||||
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
|
||||
if os.path.exists(path):
|
||||
print(f"The directory '{path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
|
||||
self.pipe.load_textual_inversion(path)
|
||||
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
# TODO: Repair the controlnet loading.
|
||||
controlnets = config.get("controlnets")
|
||||
if controlnets is not None:
|
||||
for controlnet in controlnets:
|
||||
path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
|
||||
controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
|
||||
self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
controlnet=controlnet,
|
||||
custom_pipeline="lpw_stable_diffusion",
|
||||
scheduler=self.pipe.scheduler,
|
||||
vae=self.pipe.vae,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
self.controlnet_pipe.to("cuda")
|
||||
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
@method()
|
||||
def count_token(self, p: str, n: str) -> int:
|
||||
"""
|
||||
Count the number of tokens in the prompt and negative prompt.
|
||||
"""
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="tokenizer",
|
||||
)
|
||||
token_size_p = len(tokenizer.tokenize(p))
|
||||
token_size_n = len(tokenizer.tokenize(n))
|
||||
token_size = token_size_p
|
||||
if token_size_p <= token_size_n:
|
||||
token_size = token_size_n
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
max_length = tokenizer.model_max_length - 2
|
||||
if token_size > max_length:
|
||||
max_embeddings_multiples = token_size // max_length + 1
|
||||
|
||||
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
|
||||
|
||||
return max_embeddings_multiples
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
samples: int = 1,
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
fix_by_controlnet_tile: bool = False,
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
|
||||
max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
||||
generator = torch.Generator("cuda").manual_seed(seed)
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
generated_images = self.pipe.text2img(
|
||||
prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
).images
|
||||
|
||||
base_images = generated_images
|
||||
|
||||
"""
|
||||
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
||||
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||
"""
|
||||
if fix_by_controlnet_tile:
|
||||
for image in base_images:
|
||||
image = self.resize_image(image=image, scale_factor=2)
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
fixed_by_controlnet = self.controlnet_pipe(
|
||||
prompt=prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
num_inference_steps=steps,
|
||||
strength=0.3,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
image=image,
|
||||
).images
|
||||
generated_images.extend(fixed_by_controlnet)
|
||||
base_images = fixed_by_controlnet
|
||||
|
||||
if upscaler != "":
|
||||
upscaled = self.upscale(
|
||||
base_images=base_images,
|
||||
half_precision=False,
|
||||
tile=700,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer,
|
||||
)
|
||||
generated_images.extend(upscaled)
|
||||
|
||||
image_output = []
|
||||
for image in generated_images:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format="PNG")
|
||||
image_output.append(buf.getvalue())
|
||||
|
||||
return image_output
|
||||
|
||||
@method()
|
||||
def resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
|
||||
image = image.convert("RGB")
|
||||
width, height = image.size
|
||||
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||
return img
|
||||
|
||||
@method()
|
||||
def upscale(
|
||||
self,
|
||||
base_images: list[PIL.Image],
|
||||
half_precision: bool = False,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
pre_pad: int = 0,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
) -> list[PIL.Image]:
|
||||
"""
|
||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
||||
The upscaler can be selected from the following list:
|
||||
- `RealESRGAN_x4plus`
|
||||
- `RealESRNet_x4plus`
|
||||
- `RealESRGAN_x4plus_anime_6B`
|
||||
- `RealESRGAN_x2plus`
|
||||
https://github.com/xinntao/Real-ESRGAN
|
||||
"""
|
||||
import numpy
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from gfpgan import GFPGANer
|
||||
from realesrgan import RealESRGANer
|
||||
from tqdm import tqdm
|
||||
|
||||
model_name = upscaler
|
||||
if model_name == "RealESRGAN_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRNet_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x2plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
netscale = 2
|
||||
else:
|
||||
raise NotImplementedError("Model name not supported")
|
||||
|
||||
upsampler = RealESRGANer(
|
||||
scale=netscale,
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||
dni_weight=None,
|
||||
model=upscale_model,
|
||||
tile=tile,
|
||||
tile_pad=tile_pad,
|
||||
pre_pad=pre_pad,
|
||||
half=half_precision,
|
||||
gpu_id=None,
|
||||
)
|
||||
|
||||
if use_face_enhancer:
|
||||
face_enhancer = GFPGANer(
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
||||
upscale=netscale,
|
||||
arch="clean",
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=upsampler,
|
||||
)
|
||||
|
||||
upscaled_imgs = []
|
||||
with tqdm(total=len(base_images)) as progress_bar:
|
||||
for img in base_images:
|
||||
img = numpy.array(img)
|
||||
if use_face_enhancer:
|
||||
_, _, enhance_result = face_enhancer.enhance(
|
||||
img,
|
||||
has_aligned=False,
|
||||
only_center_face=False,
|
||||
paste_back=True,
|
||||
)
|
||||
else:
|
||||
enhance_result, _ = upsampler.enhance(img)
|
||||
|
||||
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
||||
progress_bar.update(1)
|
||||
|
||||
return upscaled_imgs
|
||||
@ -1,13 +1,9 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import os
|
||||
from urllib.request import Request, urlopen
|
||||
|
||||
import diffusers
|
||||
import yaml
|
||||
from modal import Image, Mount, Secret, Stub, method
|
||||
from modal.cls import ClsMixin
|
||||
from modal import Image, Mount, Secret, Stub
|
||||
|
||||
BASE_CACHE_PATH = "/vol/cache"
|
||||
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
||||
@ -19,6 +15,8 @@ def download_file(url, file_name, file_path):
|
||||
"""
|
||||
Download files.
|
||||
"""
|
||||
from urllib.request import Request, urlopen
|
||||
|
||||
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
|
||||
downloaded = urlopen(req).read()
|
||||
dir_names = os.path.join(file_path, file_name)
|
||||
@ -70,6 +68,8 @@ def build_image():
|
||||
"""
|
||||
Build the Docker image.
|
||||
"""
|
||||
import yaml
|
||||
|
||||
token = os.environ["HUGGING_FACE_TOKEN"]
|
||||
config = {}
|
||||
with open("/config.yml", "r") as file:
|
||||
@ -109,302 +109,16 @@ def build_image():
|
||||
|
||||
stub = Stub("stable-diffusion-cli")
|
||||
base_stub = Image.from_dockerfile(
|
||||
path="./setup_files/Dockerfile",
|
||||
context_mount=Mount.from_local_file("./setup_files/requirements.txt"),
|
||||
path="Dockerfile",
|
||||
context_mount=Mount.from_local_file("requirements.txt"),
|
||||
)
|
||||
stub.image = base_stub.extend(
|
||||
dockerfile_commands=[
|
||||
"FROM base",
|
||||
"COPY ./config.yml /",
|
||||
"COPY config.yml /",
|
||||
],
|
||||
context_mount=Mount.from_local_file("./setup_files/config.yml"),
|
||||
context_mount=Mount.from_local_file("config.yml"),
|
||||
).run_function(
|
||||
build_image,
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
|
||||
|
||||
@stub.cls(
|
||||
gpu="A10G",
|
||||
secrets=[Secret.from_dotenv(__file__)],
|
||||
)
|
||||
class StableDiffusion(ClsMixin):
|
||||
"""
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
import torch
|
||||
|
||||
config = {}
|
||||
with open("/config.yml", "r") as file:
|
||||
config = yaml.safe_load(file)
|
||||
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
||||
if os.path.exists(self.cache_path):
|
||||
print(f"The directory '{self.cache_path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{self.cache_path}' does not exist.")
|
||||
|
||||
torch.cuda.memory._set_allocator_settings("max_split_size_mb:256")
|
||||
|
||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
custom_pipeline="lpw_stable_diffusion",
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
|
||||
# TODO: Add support for other schedulers.
|
||||
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="scheduler",
|
||||
)
|
||||
|
||||
vae = config.get("vae")
|
||||
if vae is not None:
|
||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="vae",
|
||||
)
|
||||
self.pipe.to("cuda")
|
||||
|
||||
loras = config.get("loras")
|
||||
if loras is not None:
|
||||
for lora in loras:
|
||||
path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
|
||||
if os.path.exists(path):
|
||||
print(f"The directory '{path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{path}' does not exist. Download it...")
|
||||
download_file(lora["download_url"], lora["name"], BASE_CACHE_PATH_LORA)
|
||||
self.pipe.load_lora_weights(".", weight_name=path)
|
||||
|
||||
textual_inversions = config.get("textual_inversions")
|
||||
if textual_inversions is not None:
|
||||
for textual_inversion in textual_inversions:
|
||||
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
|
||||
if os.path.exists(path):
|
||||
print(f"The directory '{path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{path}' does not exist. Download it...")
|
||||
download_file(
|
||||
textual_inversion["download_url"],
|
||||
textual_inversion["name"],
|
||||
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||
)
|
||||
self.pipe.load_textual_inversion(path)
|
||||
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
# TODO: Repair the controlnet loading.
|
||||
controlnets = config.get("controlnets")
|
||||
if controlnets is not None:
|
||||
for controlnet in controlnets:
|
||||
path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
|
||||
controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
|
||||
self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
controlnet=controlnet,
|
||||
custom_pipeline="lpw_stable_diffusion",
|
||||
scheduler=self.pipe.scheduler,
|
||||
vae=self.pipe.vae,
|
||||
torch_dtype=torch.float16,
|
||||
)
|
||||
self.controlnet_pipe.to("cuda")
|
||||
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
@method()
|
||||
def count_token(self, p: str, n: str) -> int:
|
||||
"""
|
||||
Count the number of tokens in the prompt and negative prompt.
|
||||
"""
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="tokenizer",
|
||||
)
|
||||
token_size_p = len(tokenizer.tokenize(p))
|
||||
token_size_n = len(tokenizer.tokenize(n))
|
||||
token_size = token_size_p
|
||||
if token_size_p <= token_size_n:
|
||||
token_size = token_size_n
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
max_length = tokenizer.model_max_length - 2
|
||||
if token_size > max_length:
|
||||
max_embeddings_multiples = token_size // max_length + 1
|
||||
|
||||
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
|
||||
|
||||
return max_embeddings_multiples
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
samples: int = 1,
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
fix_by_controlnet_tile: bool = False,
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
import torch
|
||||
|
||||
max_embeddings_multiples = self.count_token(p=prompt, n=n_prompt)
|
||||
generator = torch.Generator("cuda").manual_seed(seed)
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
generated_images = self.pipe.text2img(
|
||||
prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
).images
|
||||
|
||||
base_images = generated_images
|
||||
|
||||
"""
|
||||
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
||||
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||
"""
|
||||
if fix_by_controlnet_tile:
|
||||
for image in base_images:
|
||||
image = self.resize_image(image=image, scale_factor=2)
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
fixed_by_controlnet = self.controlnet_pipe(
|
||||
prompt=prompt * batch_size,
|
||||
negative_prompt=n_prompt * batch_size,
|
||||
num_inference_steps=steps,
|
||||
strength=0.3,
|
||||
guidance_scale=7.5,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
generator=generator,
|
||||
image=image,
|
||||
).images
|
||||
generated_images.extend(fixed_by_controlnet)
|
||||
base_images = fixed_by_controlnet
|
||||
|
||||
if upscaler != "":
|
||||
upscaled = self.upscale(
|
||||
base_images=base_images,
|
||||
half_precision=False,
|
||||
tile=700,
|
||||
upscaler=upscaler,
|
||||
use_face_enhancer=use_face_enhancer,
|
||||
)
|
||||
generated_images.extend(upscaled)
|
||||
|
||||
image_output = []
|
||||
for image in generated_images:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format="PNG")
|
||||
image_output.append(buf.getvalue())
|
||||
|
||||
return image_output
|
||||
|
||||
@method()
|
||||
def resize_image(self, image: Image.Image, scale_factor: int) -> Image.Image:
|
||||
from PIL import Image
|
||||
|
||||
image = image.convert("RGB")
|
||||
width, height = image.size
|
||||
img = image.resize((width * scale_factor, height * scale_factor), resample=Image.LANCZOS)
|
||||
return img
|
||||
|
||||
@method()
|
||||
def upscale(
|
||||
self,
|
||||
base_images: list[Image.Image],
|
||||
half_precision: bool = False,
|
||||
tile: int = 0,
|
||||
tile_pad: int = 10,
|
||||
pre_pad: int = 0,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
) -> list[Image.Image]:
|
||||
"""
|
||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
||||
The upscaler can be selected from the following list:
|
||||
- `RealESRGAN_x4plus`
|
||||
- `RealESRNet_x4plus`
|
||||
- `RealESRGAN_x4plus_anime_6B`
|
||||
- `RealESRGAN_x2plus`
|
||||
https://github.com/xinntao/Real-ESRGAN
|
||||
"""
|
||||
import numpy
|
||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
||||
from PIL import Image
|
||||
from realesrgan import RealESRGANer
|
||||
from tqdm import tqdm
|
||||
|
||||
model_name = upscaler
|
||||
if model_name == "RealESRGAN_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRNet_x4plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
||||
netscale = 4
|
||||
elif model_name == "RealESRGAN_x2plus":
|
||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
||||
netscale = 2
|
||||
else:
|
||||
raise NotImplementedError("Model name not supported")
|
||||
|
||||
upsampler = RealESRGANer(
|
||||
scale=netscale,
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
||||
dni_weight=None,
|
||||
model=upscale_model,
|
||||
tile=tile,
|
||||
tile_pad=tile_pad,
|
||||
pre_pad=pre_pad,
|
||||
half=half_precision,
|
||||
gpu_id=None,
|
||||
)
|
||||
|
||||
from gfpgan import GFPGANer
|
||||
|
||||
if use_face_enhancer:
|
||||
face_enhancer = GFPGANer(
|
||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
||||
upscale=netscale,
|
||||
arch="clean",
|
||||
channel_multiplier=2,
|
||||
bg_upsampler=upsampler,
|
||||
)
|
||||
|
||||
upscaled_imgs = []
|
||||
with tqdm(total=len(base_images)) as progress_bar:
|
||||
for img in base_images:
|
||||
img = numpy.array(img)
|
||||
if use_face_enhancer:
|
||||
_, _, enhance_result = face_enhancer.enhance(
|
||||
img,
|
||||
has_aligned=False,
|
||||
only_center_face=False,
|
||||
paste_back=True,
|
||||
)
|
||||
else:
|
||||
enhance_result, _ = upsampler.enhance(img)
|
||||
|
||||
upscaled_imgs.append(Image.fromarray(enhance_result))
|
||||
progress_bar.update(1)
|
||||
|
||||
return upscaled_imgs
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user