Merge pull request #159 from hodanov/feature/refactoring

Fix some lint errors. Refactor app.
This commit is contained in:
hodanov 2024-11-04 14:11:23 +09:00 committed by GitHub
commit 82c162b947
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 35 additions and 31 deletions

View File

@ -1,5 +1,6 @@
import os
from abc import ABC, abstractmethod
from pathlib import Path
import diffusers
from huggingface_hub import login
@ -36,7 +37,7 @@ class StableDiffusionCLISetupSDXL(StableDiffusionCLISetupInterface):
self.__token: str = token
def download_model(self) -> None:
cache_path = os.path.join(BASE_CACHE_PATH, self.__model_name)
cache_path = Path(BASE_CACHE_PATH) / self.__model_name
pipe = diffusers.StableDiffusionXLPipeline.from_single_file(
pretrained_model_link_or_path=self.__model_url,
use_auth_token=self.__token,
@ -63,7 +64,7 @@ class StableDiffusionCLISetupSD15(StableDiffusionCLISetupInterface):
self.__token: str = token
def download_model(self) -> None:
cache_path = os.path.join(BASE_CACHE_PATH, self.__model_name)
cache_path = Path(BASE_CACHE_PATH) / self.__model_name
pipe = diffusers.StableDiffusionPipeline.from_single_file(
pretrained_model_link_or_path=self.__model_url,
token=self.__token,
@ -117,7 +118,7 @@ class CommonSetup:
)
def __download_vae(self, name: str, model_url: str, token: str) -> None:
cache_path = os.path.join(BASE_CACHE_PATH, name)
cache_path = Path(BASE_CACHE_PATH, name)
vae = diffusers.AutoencoderKL.from_single_file(
pretrained_model_link_or_path=model_url,
use_auth_token=token,
@ -126,7 +127,7 @@ class CommonSetup:
vae.save_pretrained(cache_path, safe_serialization=True)
def __download_controlnet(self, name: str, repo_id: str, token: str) -> None:
cache_path = os.path.join(BASE_CACHE_PATH_CONTROLNET, name)
cache_path = Path(BASE_CACHE_PATH_CONTROLNET) / name
controlnet = diffusers.ControlNetModel.from_pretrained(
repo_id,
use_auth_token=token,
@ -142,7 +143,7 @@ class CommonSetup:
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
downloaded = urlopen(req).read()
dir_names = os.path.join(file_path, file_name)
dir_names = Path(file_path) / file_name
os.makedirs(os.path.dirname(dir_names), exist_ok=True)
with open(dir_names, mode="wb") as f:
f.write(downloaded)

View File

@ -1,7 +1,7 @@
from __future__ import annotations
import io
import os
from pathlib import Path
import PIL.Image
from modal import Secret, enter, method
@ -18,40 +18,39 @@ class SDXLTxt2Img:
"""
@enter()
def _setup(self):
def setup(self) -> None:
import diffusers
import torch
import yaml
config = {}
with open("/config.yml", "r") as file:
with Path("/config.yml").open() as file:
config = yaml.safe_load(file)
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{self.cache_path}' does not exist.")
self.__cache_path = Path(BASE_CACHE_PATH) / config["model"]["name"]
if not Path.exists(self.__cache_path):
msg = f"The directory '{self.__cache_path}' does not exist."
raise ValueError(msg)
self.pipe = diffusers.StableDiffusionXLPipeline.from_pretrained(
self.cache_path,
self.__pipe = diffusers.StableDiffusionXLPipeline.from_pretrained(
self.__cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
)
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
self.cache_path,
self.__refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
self.__cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
)
def _count_token(self, p: str, n: str) -> int:
def __count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
self.__cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
@ -72,49 +71,53 @@ class SDXLTxt2Img:
@method()
def run_inference(
self,
*,
prompt: str,
n_prompt: str,
height: int = 1024,
width: int = 1024,
steps: int = 30,
seed: int = 1,
use_upscaler: bool = False,
output_format: str = "png",
use_upscaler: bool = False,
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import pillow_avif # noqa
import pillow_avif # noqa: F401
import torch
max_embeddings_multiples = self.__count_token(p=prompt, n=n_prompt)
generator = torch.Generator("cuda").manual_seed(seed)
self.pipe.to("cuda")
self.pipe.enable_vae_tiling()
self.pipe.enable_xformers_memory_efficient_attention()
generated_image = self.pipe(
self.__pipe.to("cuda")
self.__pipe.enable_vae_tiling()
self.__pipe.enable_xformers_memory_efficient_attention()
generated_image = self.__pipe(
prompt=prompt,
negative_prompt=n_prompt,
guidance_scale=7,
height=height,
width=width,
generator=generator,
max_embeddings_multiples=max_embeddings_multiples,
num_inference_steps=steps,
).images[0]
generated_images = [generated_image]
if use_upscaler:
self.refiner.to("cuda")
self.refiner.enable_vae_tiling()
self.refiner.enable_xformers_memory_efficient_attention()
base_image = self._double_image_size(generated_image)
image = self.refiner(
self.__refiner.to("cuda")
self.__refiner.enable_vae_tiling()
self.__refiner.enable_xformers_memory_efficient_attention()
base_image = self.__double_image_size(generated_image)
image = self.__refiner(
prompt=prompt,
negative_prompt=n_prompt,
num_inference_steps=steps,
strength=0.3,
guidance_scale=7.5,
generator=generator,
max_embeddings_multiples=max_embeddings_multiples,
image=base_image,
).images[0]
generated_images.append(image)
@ -127,7 +130,7 @@ class SDXLTxt2Img:
return image_output
def _double_image_size(self, image: PIL.Image.Image) -> PIL.Image.Image:
def __double_image_size(self, image: PIL.Image.Image) -> PIL.Image.Image:
image = image.convert("RGB")
width, height = image.size
return image.resize((width * 2, height * 2), resample=PIL.Image.LANCZOS)