Merge pull request #159 from hodanov/feature/refactoring
Fix some lint errors. Refactor app.
This commit is contained in:
commit
82c162b947
11
app/setup.py
11
app/setup.py
@ -1,5 +1,6 @@
|
||||
import os
|
||||
from abc import ABC, abstractmethod
|
||||
from pathlib import Path
|
||||
|
||||
import diffusers
|
||||
from huggingface_hub import login
|
||||
@ -36,7 +37,7 @@ class StableDiffusionCLISetupSDXL(StableDiffusionCLISetupInterface):
|
||||
self.__token: str = token
|
||||
|
||||
def download_model(self) -> None:
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, self.__model_name)
|
||||
cache_path = Path(BASE_CACHE_PATH) / self.__model_name
|
||||
pipe = diffusers.StableDiffusionXLPipeline.from_single_file(
|
||||
pretrained_model_link_or_path=self.__model_url,
|
||||
use_auth_token=self.__token,
|
||||
@ -63,7 +64,7 @@ class StableDiffusionCLISetupSD15(StableDiffusionCLISetupInterface):
|
||||
self.__token: str = token
|
||||
|
||||
def download_model(self) -> None:
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, self.__model_name)
|
||||
cache_path = Path(BASE_CACHE_PATH) / self.__model_name
|
||||
pipe = diffusers.StableDiffusionPipeline.from_single_file(
|
||||
pretrained_model_link_or_path=self.__model_url,
|
||||
token=self.__token,
|
||||
@ -117,7 +118,7 @@ class CommonSetup:
|
||||
)
|
||||
|
||||
def __download_vae(self, name: str, model_url: str, token: str) -> None:
|
||||
cache_path = os.path.join(BASE_CACHE_PATH, name)
|
||||
cache_path = Path(BASE_CACHE_PATH, name)
|
||||
vae = diffusers.AutoencoderKL.from_single_file(
|
||||
pretrained_model_link_or_path=model_url,
|
||||
use_auth_token=token,
|
||||
@ -126,7 +127,7 @@ class CommonSetup:
|
||||
vae.save_pretrained(cache_path, safe_serialization=True)
|
||||
|
||||
def __download_controlnet(self, name: str, repo_id: str, token: str) -> None:
|
||||
cache_path = os.path.join(BASE_CACHE_PATH_CONTROLNET, name)
|
||||
cache_path = Path(BASE_CACHE_PATH_CONTROLNET) / name
|
||||
controlnet = diffusers.ControlNetModel.from_pretrained(
|
||||
repo_id,
|
||||
use_auth_token=token,
|
||||
@ -142,7 +143,7 @@ class CommonSetup:
|
||||
|
||||
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
|
||||
downloaded = urlopen(req).read()
|
||||
dir_names = os.path.join(file_path, file_name)
|
||||
dir_names = Path(file_path) / file_name
|
||||
os.makedirs(os.path.dirname(dir_names), exist_ok=True)
|
||||
with open(dir_names, mode="wb") as f:
|
||||
f.write(downloaded)
|
||||
|
||||
@ -1,7 +1,7 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import io
|
||||
import os
|
||||
from pathlib import Path
|
||||
|
||||
import PIL.Image
|
||||
from modal import Secret, enter, method
|
||||
@ -18,40 +18,39 @@ class SDXLTxt2Img:
|
||||
"""
|
||||
|
||||
@enter()
|
||||
def _setup(self):
|
||||
def setup(self) -> None:
|
||||
import diffusers
|
||||
import torch
|
||||
import yaml
|
||||
|
||||
config = {}
|
||||
with open("/config.yml", "r") as file:
|
||||
with Path("/config.yml").open() as file:
|
||||
config = yaml.safe_load(file)
|
||||
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
|
||||
if os.path.exists(self.cache_path):
|
||||
print(f"The directory '{self.cache_path}' exists.")
|
||||
else:
|
||||
print(f"The directory '{self.cache_path}' does not exist.")
|
||||
self.__cache_path = Path(BASE_CACHE_PATH) / config["model"]["name"]
|
||||
if not Path.exists(self.__cache_path):
|
||||
msg = f"The directory '{self.__cache_path}' does not exist."
|
||||
raise ValueError(msg)
|
||||
|
||||
self.pipe = diffusers.StableDiffusionXLPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
self.__pipe = diffusers.StableDiffusionXLPipeline.from_pretrained(
|
||||
self.__cache_path,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
)
|
||||
|
||||
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
||||
self.cache_path,
|
||||
self.__refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
||||
self.__cache_path,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
)
|
||||
|
||||
def _count_token(self, p: str, n: str) -> int:
|
||||
def __count_token(self, p: str, n: str) -> int:
|
||||
"""
|
||||
Count the number of tokens in the prompt and negative prompt.
|
||||
"""
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
self.cache_path,
|
||||
self.__cache_path,
|
||||
subfolder="tokenizer",
|
||||
)
|
||||
token_size_p = len(tokenizer.tokenize(p))
|
||||
@ -72,49 +71,53 @@ class SDXLTxt2Img:
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
*,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
height: int = 1024,
|
||||
width: int = 1024,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
use_upscaler: bool = False,
|
||||
output_format: str = "png",
|
||||
use_upscaler: bool = False,
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
import pillow_avif # noqa
|
||||
import pillow_avif # noqa: F401
|
||||
import torch
|
||||
|
||||
max_embeddings_multiples = self.__count_token(p=prompt, n=n_prompt)
|
||||
generator = torch.Generator("cuda").manual_seed(seed)
|
||||
self.pipe.to("cuda")
|
||||
self.pipe.enable_vae_tiling()
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
generated_image = self.pipe(
|
||||
self.__pipe.to("cuda")
|
||||
self.__pipe.enable_vae_tiling()
|
||||
self.__pipe.enable_xformers_memory_efficient_attention()
|
||||
generated_image = self.__pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt=n_prompt,
|
||||
guidance_scale=7,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
num_inference_steps=steps,
|
||||
).images[0]
|
||||
|
||||
generated_images = [generated_image]
|
||||
|
||||
if use_upscaler:
|
||||
self.refiner.to("cuda")
|
||||
self.refiner.enable_vae_tiling()
|
||||
self.refiner.enable_xformers_memory_efficient_attention()
|
||||
base_image = self._double_image_size(generated_image)
|
||||
image = self.refiner(
|
||||
self.__refiner.to("cuda")
|
||||
self.__refiner.enable_vae_tiling()
|
||||
self.__refiner.enable_xformers_memory_efficient_attention()
|
||||
base_image = self.__double_image_size(generated_image)
|
||||
image = self.__refiner(
|
||||
prompt=prompt,
|
||||
negative_prompt=n_prompt,
|
||||
num_inference_steps=steps,
|
||||
strength=0.3,
|
||||
guidance_scale=7.5,
|
||||
generator=generator,
|
||||
max_embeddings_multiples=max_embeddings_multiples,
|
||||
image=base_image,
|
||||
).images[0]
|
||||
generated_images.append(image)
|
||||
@ -127,7 +130,7 @@ class SDXLTxt2Img:
|
||||
|
||||
return image_output
|
||||
|
||||
def _double_image_size(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
||||
def __double_image_size(self, image: PIL.Image.Image) -> PIL.Image.Image:
|
||||
image = image.convert("RGB")
|
||||
width, height = image.size
|
||||
return image.resize((width * 2, height * 2), resample=PIL.Image.LANCZOS)
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user