Add sd_cli.py.
This commit is contained in:
parent
40cc09ceb0
commit
89f84c6a00
192
sd_cli.py
Normal file
192
sd_cli.py
Normal file
@ -0,0 +1,192 @@
|
||||
from __future__ import annotations
|
||||
import io
|
||||
import os
|
||||
import time
|
||||
from datetime import date
|
||||
from pathlib import Path
|
||||
from modal import Image, Secret, Stub, method
|
||||
|
||||
stub = Stub("stable-diffusion-cli")
|
||||
|
||||
MODEL = {
|
||||
"repo_id": "runwayml/stable-diffusion-v1-5",
|
||||
"name": "stable-diffusion-v1-5",
|
||||
}
|
||||
CACHE_PATH = os.path.join("/vol/cache", MODEL["name"])
|
||||
|
||||
|
||||
def download_models():
|
||||
"""
|
||||
Downloads the model from Hugging Face and saves it to the cache path using
|
||||
diffusers.StableDiffusionPipeline.from_pretrained().
|
||||
"""
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
|
||||
|
||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
MODEL["repo_id"],
|
||||
subfolder="scheduler",
|
||||
use_auth_token=hugging_face_token,
|
||||
cache_dir=CACHE_PATH,
|
||||
)
|
||||
scheduler.save_pretrained(CACHE_PATH, safe_serialization=True)
|
||||
|
||||
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
MODEL["repo_id"],
|
||||
use_auth_token=hugging_face_token,
|
||||
torch_dtype=torch.float16,
|
||||
cache_dir=CACHE_PATH,
|
||||
)
|
||||
pipe.save_pretrained(CACHE_PATH, safe_serialization=True)
|
||||
|
||||
|
||||
stub_image = (
|
||||
Image.debian_slim(python_version="3.10")
|
||||
.pip_install(
|
||||
"accelerate",
|
||||
"diffusers[torch]>=0.15.1",
|
||||
"ftfy",
|
||||
"torch",
|
||||
"torchvision",
|
||||
"transformers~=4.25.1",
|
||||
"triton",
|
||||
"safetensors",
|
||||
"torch>=2.0",
|
||||
)
|
||||
.pip_install("xformers", pre=True)
|
||||
.run_function(
|
||||
download_models,
|
||||
secrets=[Secret.from_name("my-huggingface-secret")],
|
||||
)
|
||||
)
|
||||
stub.image = stub_image
|
||||
|
||||
|
||||
@stub.cls(gpu="A10G", secrets=[Secret.from_name("my-huggingface-secret")])
|
||||
class StableDiffusion:
|
||||
"""
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
import diffusers
|
||||
import torch
|
||||
|
||||
if os.path.exists(CACHE_PATH):
|
||||
print(f"The directory '{CACHE_PATH}' exists.")
|
||||
else:
|
||||
print(f"The directory '{CACHE_PATH}' does not exist. Download models...")
|
||||
download_models()
|
||||
|
||||
torch.backends.cuda.matmul.allow_tf32 = True
|
||||
|
||||
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||
CACHE_PATH,
|
||||
subfolder="scheduler",
|
||||
solver_order=2,
|
||||
prediction_type="epsilon",
|
||||
thresholding=False,
|
||||
algorithm_type="dpmsolver++",
|
||||
solver_type="midpoint",
|
||||
denoise_final=True, # important if steps are <= 10
|
||||
low_cpu_mem_usage=True,
|
||||
device_map="auto",
|
||||
)
|
||||
|
||||
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||
CACHE_PATH,
|
||||
scheduler=scheduler,
|
||||
low_cpu_mem_usage=True,
|
||||
device_map="auto",
|
||||
).to("cuda")
|
||||
if self.pipe.safety_checker is not None:
|
||||
self.pipe.safety_checker = lambda images, **kwargs: (images, False)
|
||||
self.pipe.enable_xformers_memory_efficient_attention()
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
steps: int = 30,
|
||||
batch_size: int = 1,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||
"""
|
||||
import torch
|
||||
|
||||
with torch.inference_mode():
|
||||
with torch.autocast("cuda"):
|
||||
images = self.pipe(
|
||||
[prompt] * batch_size,
|
||||
negative_prompt=[n_prompt] * batch_size,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=steps,
|
||||
guidance_scale=7.5,
|
||||
).images
|
||||
|
||||
# Convert to PNG bytes
|
||||
image_output = []
|
||||
for image in images:
|
||||
with io.BytesIO() as buf:
|
||||
image.save(buf, format="PNG")
|
||||
image_output.append(buf.getvalue())
|
||||
return image_output
|
||||
|
||||
|
||||
@stub.local_entrypoint()
|
||||
def entrypoint(
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
samples: int = 5,
|
||||
steps: int = 30,
|
||||
batch_size: int = 1,
|
||||
height: int = 512,
|
||||
width: int = 512,
|
||||
):
|
||||
"""
|
||||
This function is the entrypoint for the Runway CLI.
|
||||
The function pass the given prompt to StableDiffusion on Modal,
|
||||
gets back a list of images and outputs images to local.
|
||||
|
||||
The function is called with the following arguments:
|
||||
- prompt: the prompt to run inference on
|
||||
- n_prompt: the negative prompt to run inference on
|
||||
- samples: the number of samples to generate
|
||||
- steps: the number of steps to run inference for
|
||||
- batch_size: the batch size to use
|
||||
- height: the height of the output image
|
||||
- width: the width of the output image
|
||||
"""
|
||||
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
|
||||
|
||||
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
|
||||
if not directory.exists():
|
||||
directory.mkdir(exist_ok=True, parents=True)
|
||||
|
||||
stable_diffusion = StableDiffusion()
|
||||
for i in range(samples):
|
||||
start_time = time.time()
|
||||
images = stable_diffusion.run_inference.call(
|
||||
prompt,
|
||||
n_prompt,
|
||||
steps,
|
||||
batch_size,
|
||||
height,
|
||||
width,
|
||||
)
|
||||
total_time = time.time() - start_time
|
||||
print(
|
||||
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
|
||||
)
|
||||
for j, image_bytes in enumerate(images):
|
||||
output_path = directory / f"output_{j}_{i}.png"
|
||||
print(f"Saving it to {output_path}")
|
||||
with open(output_path, "wb") as file:
|
||||
file.write(image_bytes)
|
||||
Loading…
x
Reference in New Issue
Block a user