Add sd_cli.py.
This commit is contained in:
parent
40cc09ceb0
commit
89f84c6a00
192
sd_cli.py
Normal file
192
sd_cli.py
Normal file
@ -0,0 +1,192 @@
|
|||||||
|
from __future__ import annotations
|
||||||
|
import io
|
||||||
|
import os
|
||||||
|
import time
|
||||||
|
from datetime import date
|
||||||
|
from pathlib import Path
|
||||||
|
from modal import Image, Secret, Stub, method
|
||||||
|
|
||||||
|
stub = Stub("stable-diffusion-cli")
|
||||||
|
|
||||||
|
MODEL = {
|
||||||
|
"repo_id": "runwayml/stable-diffusion-v1-5",
|
||||||
|
"name": "stable-diffusion-v1-5",
|
||||||
|
}
|
||||||
|
CACHE_PATH = os.path.join("/vol/cache", MODEL["name"])
|
||||||
|
|
||||||
|
|
||||||
|
def download_models():
|
||||||
|
"""
|
||||||
|
Downloads the model from Hugging Face and saves it to the cache path using
|
||||||
|
diffusers.StableDiffusionPipeline.from_pretrained().
|
||||||
|
"""
|
||||||
|
import diffusers
|
||||||
|
import torch
|
||||||
|
|
||||||
|
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
|
||||||
|
|
||||||
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
|
MODEL["repo_id"],
|
||||||
|
subfolder="scheduler",
|
||||||
|
use_auth_token=hugging_face_token,
|
||||||
|
cache_dir=CACHE_PATH,
|
||||||
|
)
|
||||||
|
scheduler.save_pretrained(CACHE_PATH, safe_serialization=True)
|
||||||
|
|
||||||
|
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
|
MODEL["repo_id"],
|
||||||
|
use_auth_token=hugging_face_token,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
cache_dir=CACHE_PATH,
|
||||||
|
)
|
||||||
|
pipe.save_pretrained(CACHE_PATH, safe_serialization=True)
|
||||||
|
|
||||||
|
|
||||||
|
stub_image = (
|
||||||
|
Image.debian_slim(python_version="3.10")
|
||||||
|
.pip_install(
|
||||||
|
"accelerate",
|
||||||
|
"diffusers[torch]>=0.15.1",
|
||||||
|
"ftfy",
|
||||||
|
"torch",
|
||||||
|
"torchvision",
|
||||||
|
"transformers~=4.25.1",
|
||||||
|
"triton",
|
||||||
|
"safetensors",
|
||||||
|
"torch>=2.0",
|
||||||
|
)
|
||||||
|
.pip_install("xformers", pre=True)
|
||||||
|
.run_function(
|
||||||
|
download_models,
|
||||||
|
secrets=[Secret.from_name("my-huggingface-secret")],
|
||||||
|
)
|
||||||
|
)
|
||||||
|
stub.image = stub_image
|
||||||
|
|
||||||
|
|
||||||
|
@stub.cls(gpu="A10G", secrets=[Secret.from_name("my-huggingface-secret")])
|
||||||
|
class StableDiffusion:
|
||||||
|
"""
|
||||||
|
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
import diffusers
|
||||||
|
import torch
|
||||||
|
|
||||||
|
if os.path.exists(CACHE_PATH):
|
||||||
|
print(f"The directory '{CACHE_PATH}' exists.")
|
||||||
|
else:
|
||||||
|
print(f"The directory '{CACHE_PATH}' does not exist. Download models...")
|
||||||
|
download_models()
|
||||||
|
|
||||||
|
torch.backends.cuda.matmul.allow_tf32 = True
|
||||||
|
|
||||||
|
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
|
||||||
|
CACHE_PATH,
|
||||||
|
subfolder="scheduler",
|
||||||
|
solver_order=2,
|
||||||
|
prediction_type="epsilon",
|
||||||
|
thresholding=False,
|
||||||
|
algorithm_type="dpmsolver++",
|
||||||
|
solver_type="midpoint",
|
||||||
|
denoise_final=True, # important if steps are <= 10
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
device_map="auto",
|
||||||
|
)
|
||||||
|
|
||||||
|
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
|
||||||
|
CACHE_PATH,
|
||||||
|
scheduler=scheduler,
|
||||||
|
low_cpu_mem_usage=True,
|
||||||
|
device_map="auto",
|
||||||
|
).to("cuda")
|
||||||
|
if self.pipe.safety_checker is not None:
|
||||||
|
self.pipe.safety_checker = lambda images, **kwargs: (images, False)
|
||||||
|
self.pipe.enable_xformers_memory_efficient_attention()
|
||||||
|
|
||||||
|
@method()
|
||||||
|
def run_inference(
|
||||||
|
self,
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
steps: int = 30,
|
||||||
|
batch_size: int = 1,
|
||||||
|
height: int = 512,
|
||||||
|
width: int = 512,
|
||||||
|
) -> list[bytes]:
|
||||||
|
"""
|
||||||
|
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
|
||||||
|
"""
|
||||||
|
import torch
|
||||||
|
|
||||||
|
with torch.inference_mode():
|
||||||
|
with torch.autocast("cuda"):
|
||||||
|
images = self.pipe(
|
||||||
|
[prompt] * batch_size,
|
||||||
|
negative_prompt=[n_prompt] * batch_size,
|
||||||
|
height=height,
|
||||||
|
width=width,
|
||||||
|
num_inference_steps=steps,
|
||||||
|
guidance_scale=7.5,
|
||||||
|
).images
|
||||||
|
|
||||||
|
# Convert to PNG bytes
|
||||||
|
image_output = []
|
||||||
|
for image in images:
|
||||||
|
with io.BytesIO() as buf:
|
||||||
|
image.save(buf, format="PNG")
|
||||||
|
image_output.append(buf.getvalue())
|
||||||
|
return image_output
|
||||||
|
|
||||||
|
|
||||||
|
@stub.local_entrypoint()
|
||||||
|
def entrypoint(
|
||||||
|
prompt: str,
|
||||||
|
n_prompt: str,
|
||||||
|
samples: int = 5,
|
||||||
|
steps: int = 30,
|
||||||
|
batch_size: int = 1,
|
||||||
|
height: int = 512,
|
||||||
|
width: int = 512,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
This function is the entrypoint for the Runway CLI.
|
||||||
|
The function pass the given prompt to StableDiffusion on Modal,
|
||||||
|
gets back a list of images and outputs images to local.
|
||||||
|
|
||||||
|
The function is called with the following arguments:
|
||||||
|
- prompt: the prompt to run inference on
|
||||||
|
- n_prompt: the negative prompt to run inference on
|
||||||
|
- samples: the number of samples to generate
|
||||||
|
- steps: the number of steps to run inference for
|
||||||
|
- batch_size: the batch size to use
|
||||||
|
- height: the height of the output image
|
||||||
|
- width: the width of the output image
|
||||||
|
"""
|
||||||
|
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
|
||||||
|
|
||||||
|
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
|
||||||
|
if not directory.exists():
|
||||||
|
directory.mkdir(exist_ok=True, parents=True)
|
||||||
|
|
||||||
|
stable_diffusion = StableDiffusion()
|
||||||
|
for i in range(samples):
|
||||||
|
start_time = time.time()
|
||||||
|
images = stable_diffusion.run_inference.call(
|
||||||
|
prompt,
|
||||||
|
n_prompt,
|
||||||
|
steps,
|
||||||
|
batch_size,
|
||||||
|
height,
|
||||||
|
width,
|
||||||
|
)
|
||||||
|
total_time = time.time() - start_time
|
||||||
|
print(
|
||||||
|
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
|
||||||
|
)
|
||||||
|
for j, image_bytes in enumerate(images):
|
||||||
|
output_path = directory / f"output_{j}_{i}.png"
|
||||||
|
print(f"Saving it to {output_path}")
|
||||||
|
with open(output_path, "wb") as file:
|
||||||
|
file.write(image_bytes)
|
||||||
Loading…
x
Reference in New Issue
Block a user