Add sd_cli.py.
This commit is contained in:
		
							parent
							
								
									40cc09ceb0
								
							
						
					
					
						commit
						89f84c6a00
					
				
							
								
								
									
										192
									
								
								sd_cli.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										192
									
								
								sd_cli.py
									
									
									
									
									
										Normal file
									
								
							@ -0,0 +1,192 @@
 | 
			
		||||
from __future__ import annotations
 | 
			
		||||
import io
 | 
			
		||||
import os
 | 
			
		||||
import time
 | 
			
		||||
from datetime import date
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
from modal import Image, Secret, Stub, method
 | 
			
		||||
 | 
			
		||||
stub = Stub("stable-diffusion-cli")
 | 
			
		||||
 | 
			
		||||
MODEL = {
 | 
			
		||||
    "repo_id": "runwayml/stable-diffusion-v1-5",
 | 
			
		||||
    "name": "stable-diffusion-v1-5",
 | 
			
		||||
}
 | 
			
		||||
CACHE_PATH = os.path.join("/vol/cache", MODEL["name"])
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def download_models():
 | 
			
		||||
    """
 | 
			
		||||
    Downloads the model from Hugging Face and saves it to the cache path using
 | 
			
		||||
    diffusers.StableDiffusionPipeline.from_pretrained().
 | 
			
		||||
    """
 | 
			
		||||
    import diffusers
 | 
			
		||||
    import torch
 | 
			
		||||
 | 
			
		||||
    hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
 | 
			
		||||
 | 
			
		||||
    scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
			
		||||
        MODEL["repo_id"],
 | 
			
		||||
        subfolder="scheduler",
 | 
			
		||||
        use_auth_token=hugging_face_token,
 | 
			
		||||
        cache_dir=CACHE_PATH,
 | 
			
		||||
    )
 | 
			
		||||
    scheduler.save_pretrained(CACHE_PATH, safe_serialization=True)
 | 
			
		||||
 | 
			
		||||
    pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
			
		||||
        MODEL["repo_id"],
 | 
			
		||||
        use_auth_token=hugging_face_token,
 | 
			
		||||
        torch_dtype=torch.float16,
 | 
			
		||||
        cache_dir=CACHE_PATH,
 | 
			
		||||
    )
 | 
			
		||||
    pipe.save_pretrained(CACHE_PATH, safe_serialization=True)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
stub_image = (
 | 
			
		||||
    Image.debian_slim(python_version="3.10")
 | 
			
		||||
    .pip_install(
 | 
			
		||||
        "accelerate",
 | 
			
		||||
        "diffusers[torch]>=0.15.1",
 | 
			
		||||
        "ftfy",
 | 
			
		||||
        "torch",
 | 
			
		||||
        "torchvision",
 | 
			
		||||
        "transformers~=4.25.1",
 | 
			
		||||
        "triton",
 | 
			
		||||
        "safetensors",
 | 
			
		||||
        "torch>=2.0",
 | 
			
		||||
    )
 | 
			
		||||
    .pip_install("xformers", pre=True)
 | 
			
		||||
    .run_function(
 | 
			
		||||
        download_models,
 | 
			
		||||
        secrets=[Secret.from_name("my-huggingface-secret")],
 | 
			
		||||
    )
 | 
			
		||||
)
 | 
			
		||||
stub.image = stub_image
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.cls(gpu="A10G", secrets=[Secret.from_name("my-huggingface-secret")])
 | 
			
		||||
class StableDiffusion:
 | 
			
		||||
    """
 | 
			
		||||
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    def __enter__(self):
 | 
			
		||||
        import diffusers
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        if os.path.exists(CACHE_PATH):
 | 
			
		||||
            print(f"The directory '{CACHE_PATH}' exists.")
 | 
			
		||||
        else:
 | 
			
		||||
            print(f"The directory '{CACHE_PATH}' does not exist. Download models...")
 | 
			
		||||
            download_models()
 | 
			
		||||
 | 
			
		||||
        torch.backends.cuda.matmul.allow_tf32 = True
 | 
			
		||||
 | 
			
		||||
        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
			
		||||
            CACHE_PATH,
 | 
			
		||||
            subfolder="scheduler",
 | 
			
		||||
            solver_order=2,
 | 
			
		||||
            prediction_type="epsilon",
 | 
			
		||||
            thresholding=False,
 | 
			
		||||
            algorithm_type="dpmsolver++",
 | 
			
		||||
            solver_type="midpoint",
 | 
			
		||||
            denoise_final=True,  # important if steps are <= 10
 | 
			
		||||
            low_cpu_mem_usage=True,
 | 
			
		||||
            device_map="auto",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
			
		||||
            CACHE_PATH,
 | 
			
		||||
            scheduler=scheduler,
 | 
			
		||||
            low_cpu_mem_usage=True,
 | 
			
		||||
            device_map="auto",
 | 
			
		||||
        ).to("cuda")
 | 
			
		||||
        if self.pipe.safety_checker is not None:
 | 
			
		||||
            self.pipe.safety_checker = lambda images, **kwargs: (images, False)
 | 
			
		||||
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
    def run_inference(
 | 
			
		||||
        self,
 | 
			
		||||
        prompt: str,
 | 
			
		||||
        n_prompt: str,
 | 
			
		||||
        steps: int = 30,
 | 
			
		||||
        batch_size: int = 1,
 | 
			
		||||
        height: int = 512,
 | 
			
		||||
        width: int = 512,
 | 
			
		||||
    ) -> list[bytes]:
 | 
			
		||||
        """
 | 
			
		||||
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
			
		||||
        """
 | 
			
		||||
        import torch
 | 
			
		||||
 | 
			
		||||
        with torch.inference_mode():
 | 
			
		||||
            with torch.autocast("cuda"):
 | 
			
		||||
                images = self.pipe(
 | 
			
		||||
                    [prompt] * batch_size,
 | 
			
		||||
                    negative_prompt=[n_prompt] * batch_size,
 | 
			
		||||
                    height=height,
 | 
			
		||||
                    width=width,
 | 
			
		||||
                    num_inference_steps=steps,
 | 
			
		||||
                    guidance_scale=7.5,
 | 
			
		||||
                ).images
 | 
			
		||||
 | 
			
		||||
        # Convert to PNG bytes
 | 
			
		||||
        image_output = []
 | 
			
		||||
        for image in images:
 | 
			
		||||
            with io.BytesIO() as buf:
 | 
			
		||||
                image.save(buf, format="PNG")
 | 
			
		||||
                image_output.append(buf.getvalue())
 | 
			
		||||
        return image_output
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@stub.local_entrypoint()
 | 
			
		||||
def entrypoint(
 | 
			
		||||
    prompt: str,
 | 
			
		||||
    n_prompt: str,
 | 
			
		||||
    samples: int = 5,
 | 
			
		||||
    steps: int = 30,
 | 
			
		||||
    batch_size: int = 1,
 | 
			
		||||
    height: int = 512,
 | 
			
		||||
    width: int = 512,
 | 
			
		||||
):
 | 
			
		||||
    """
 | 
			
		||||
    This function is the entrypoint for the Runway CLI.
 | 
			
		||||
    The function pass the given prompt to StableDiffusion on Modal,
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
 | 
			
		||||
    The function is called with the following arguments:
 | 
			
		||||
    - prompt: the prompt to run inference on
 | 
			
		||||
    - n_prompt: the negative prompt to run inference on
 | 
			
		||||
    - samples: the number of samples to generate
 | 
			
		||||
    - steps: the number of steps to run inference for
 | 
			
		||||
    - batch_size: the batch size to use
 | 
			
		||||
    - height: the height of the output image
 | 
			
		||||
    - width: the width of the output image
 | 
			
		||||
    """
 | 
			
		||||
    print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
 | 
			
		||||
 | 
			
		||||
    directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
 | 
			
		||||
    if not directory.exists():
 | 
			
		||||
        directory.mkdir(exist_ok=True, parents=True)
 | 
			
		||||
 | 
			
		||||
    stable_diffusion = StableDiffusion()
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        images = stable_diffusion.run_inference.call(
 | 
			
		||||
            prompt,
 | 
			
		||||
            n_prompt,
 | 
			
		||||
            steps,
 | 
			
		||||
            batch_size,
 | 
			
		||||
            height,
 | 
			
		||||
            width,
 | 
			
		||||
        )
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(
 | 
			
		||||
            f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
 | 
			
		||||
        )
 | 
			
		||||
        for j, image_bytes in enumerate(images):
 | 
			
		||||
            output_path = directory / f"output_{j}_{i}.png"
 | 
			
		||||
            print(f"Saving it to {output_path}")
 | 
			
		||||
            with open(output_path, "wb") as file:
 | 
			
		||||
                file.write(image_bytes)
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user