Merge pull request #6 from hodanov/feature/modify_to_add_meta_datas

Modify to add seed to filename.
This commit is contained in:
hodanov 2023-06-16 20:00:00 +09:00 committed by GitHub
commit a234d49851
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
4 changed files with 27 additions and 22 deletions

View File

@ -1,3 +1,4 @@
HUGGING_FACE_TOKEN=""
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
MODEL_NAME="stable-diffusion-2-1"
USE_VAE="false"

View File

@ -6,5 +6,4 @@ run:
--height 768 \
--width 512 \
--samples 5 \
--steps 50 \
--seed 500
--steps 50

View File

@ -75,23 +75,31 @@ class StableDiffusion:
torch.backends.cuda.matmul.allow_tf32 = True
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
)
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
vae=vae,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
if os.environ["USE_VAE"] == "true":
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
vae=vae,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
else:
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
@method()
@ -213,9 +221,6 @@ def entrypoint(
gets back a list of images and outputs images to local.
"""
if seed == -1:
seed = util.generate_seed()
inputs: dict[str, int | str] = {
"prompt": prompt,
"n_prompt": n_prompt,
@ -233,9 +238,11 @@ def entrypoint(
sd = StableDiffusion()
for i in range(samples):
if seed == -1:
inputs["seed"] = util.generate_seed()
start_time = time.time()
images = sd.run_inference.call(inputs)
util.save_images(directory, images, inputs, i)
util.save_images(directory, images, int(inputs["seed"]), i)
total_time = time.time() - start_time
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")

View File

@ -4,8 +4,6 @@ import time
from datetime import date
from pathlib import Path
from PIL import Image
OUTPUT_DIRECTORY = "outputs"
DATE_TODAY = date.today().strftime("%Y-%m-%d")
@ -65,13 +63,13 @@ def count_token(p: str, n: str) -> int:
return max_embeddings_multiples
def save_images(directory: Path, images: list[bytes], inputs: dict[str, int | str], i: int):
def save_images(directory: Path, images: list[bytes], seed: int, i: int):
"""
Save images to a file.
"""
for j, image_bytes in enumerate(images):
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
output_path = directory / f"{formatted_time}_{inputs['seed']}_{i}_{j}.png"
output_path = directory / f"{formatted_time}_{seed}_{i}_{j}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)