Merge pull request #6 from hodanov/feature/modify_to_add_meta_datas
Modify to add seed to filename.
This commit is contained in:
		
						commit
						a234d49851
					
				@ -1,3 +1,4 @@
 | 
			
		||||
HUGGING_FACE_TOKEN=""
 | 
			
		||||
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
 | 
			
		||||
MODEL_NAME="stable-diffusion-2-1"
 | 
			
		||||
USE_VAE="false"
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										3
									
								
								Makefile
									
									
									
									
									
								
							
							
						
						
									
										3
									
								
								Makefile
									
									
									
									
									
								
							@ -6,5 +6,4 @@ run:
 | 
			
		||||
	--height 768 \
 | 
			
		||||
	--width 512 \
 | 
			
		||||
	--samples 5 \
 | 
			
		||||
	--steps 50 \
 | 
			
		||||
	--seed 500
 | 
			
		||||
	--steps 50
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										25
									
								
								sd_cli.py
									
									
									
									
									
								
							
							
						
						
									
										25
									
								
								sd_cli.py
									
									
									
									
									
								
							@ -75,16 +75,16 @@ class StableDiffusion:
 | 
			
		||||
 | 
			
		||||
        torch.backends.cuda.matmul.allow_tf32 = True
 | 
			
		||||
 | 
			
		||||
        vae = diffusers.AutoencoderKL.from_pretrained(
 | 
			
		||||
            cache_path,
 | 
			
		||||
            subfolder="vae",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
			
		||||
            cache_path,
 | 
			
		||||
            subfolder="scheduler",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        if os.environ["USE_VAE"] == "true":
 | 
			
		||||
            vae = diffusers.AutoencoderKL.from_pretrained(
 | 
			
		||||
                cache_path,
 | 
			
		||||
                subfolder="vae",
 | 
			
		||||
            )
 | 
			
		||||
            self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
			
		||||
                cache_path,
 | 
			
		||||
                scheduler=scheduler,
 | 
			
		||||
@ -92,6 +92,14 @@ class StableDiffusion:
 | 
			
		||||
                custom_pipeline="lpw_stable_diffusion",
 | 
			
		||||
                torch_dtype=torch.float16,
 | 
			
		||||
            ).to("cuda")
 | 
			
		||||
        else:
 | 
			
		||||
            self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
			
		||||
                cache_path,
 | 
			
		||||
                scheduler=scheduler,
 | 
			
		||||
                custom_pipeline="lpw_stable_diffusion",
 | 
			
		||||
                torch_dtype=torch.float16,
 | 
			
		||||
            ).to("cuda")
 | 
			
		||||
 | 
			
		||||
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
			
		||||
 | 
			
		||||
    @method()
 | 
			
		||||
@ -213,9 +221,6 @@ def entrypoint(
 | 
			
		||||
    gets back a list of images and outputs images to local.
 | 
			
		||||
    """
 | 
			
		||||
 | 
			
		||||
    if seed == -1:
 | 
			
		||||
        seed = util.generate_seed()
 | 
			
		||||
 | 
			
		||||
    inputs: dict[str, int | str] = {
 | 
			
		||||
        "prompt": prompt,
 | 
			
		||||
        "n_prompt": n_prompt,
 | 
			
		||||
@ -233,9 +238,11 @@ def entrypoint(
 | 
			
		||||
 | 
			
		||||
    sd = StableDiffusion()
 | 
			
		||||
    for i in range(samples):
 | 
			
		||||
        if seed == -1:
 | 
			
		||||
            inputs["seed"] = util.generate_seed()
 | 
			
		||||
        start_time = time.time()
 | 
			
		||||
        images = sd.run_inference.call(inputs)
 | 
			
		||||
        util.save_images(directory, images, inputs, i)
 | 
			
		||||
        util.save_images(directory, images, int(inputs["seed"]), i)
 | 
			
		||||
        total_time = time.time() - start_time
 | 
			
		||||
        print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
							
								
								
									
										6
									
								
								util.py
									
									
									
									
									
								
							
							
						
						
									
										6
									
								
								util.py
									
									
									
									
									
								
							@ -4,8 +4,6 @@ import time
 | 
			
		||||
from datetime import date
 | 
			
		||||
from pathlib import Path
 | 
			
		||||
 | 
			
		||||
from PIL import Image
 | 
			
		||||
 | 
			
		||||
OUTPUT_DIRECTORY = "outputs"
 | 
			
		||||
DATE_TODAY = date.today().strftime("%Y-%m-%d")
 | 
			
		||||
 | 
			
		||||
@ -65,13 +63,13 @@ def count_token(p: str, n: str) -> int:
 | 
			
		||||
    return max_embeddings_multiples
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
def save_images(directory: Path, images: list[bytes], inputs: dict[str, int | str], i: int):
 | 
			
		||||
def save_images(directory: Path, images: list[bytes], seed: int, i: int):
 | 
			
		||||
    """
 | 
			
		||||
    Save images to a file.
 | 
			
		||||
    """
 | 
			
		||||
    for j, image_bytes in enumerate(images):
 | 
			
		||||
        formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
 | 
			
		||||
        output_path = directory / f"{formatted_time}_{inputs['seed']}_{i}_{j}.png"
 | 
			
		||||
        output_path = directory / f"{formatted_time}_{seed}_{i}_{j}.png"
 | 
			
		||||
        print(f"Saving it to {output_path}")
 | 
			
		||||
        with open(output_path, "wb") as file:
 | 
			
		||||
            file.write(image_bytes)
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user