Merge pull request #3 from hodanov/feature/add_sd_x2_latent_upscaler

Feature/add sd x2 latent upscaler
This commit is contained in:
hodanov 2023-06-05 10:18:38 +09:00 committed by GitHub
commit d16f8a5f66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
6 changed files with 136 additions and 71 deletions

View File

@ -1,3 +1,3 @@
HUGGINGFACE_TOKEN=""
HUGGING_FACE_TOKEN=""
MODEL_REPO_ID="stabilityai/stable-diffusion-2-1"
MODEL_NAME="stable-diffusion-2-1"

1
.gitignore vendored
View File

@ -1,4 +1,5 @@
.DS_Store
.mypy_cache/
__pycache__/
outputs/
.env

View File

@ -1,7 +1,9 @@
run:
modal run sd_cli.py \
--prompt "a woman with bob hair" \
--n-prompt "" \
--height 768 \
--width 512 \
--samples 5
--prompt "a woman with bob hair" \
--n-prompt "" \
--height 768 \
--width 512 \
--samples 5 \
--steps 20 \
--upscaler "sd_x2_latent_upscaler"

View File

@ -6,7 +6,7 @@ This is the script to execute Stable Diffusion on [Modal](https://modal.com/).
The app requires the following to run:
- python: v3.10 >
- python: > 3.10
- modal-client
- A token for Modal.

124
sd_cli.py
View File

@ -1,12 +1,12 @@
from __future__ import annotations
import io
import os
import time
from datetime import date
from pathlib import Path
from modal import Image, Secret, Stub, method, Mount
stub = Stub("stable-diffusion-cli")
from modal import Image, Mount, Secret, Stub, method
import util
BASE_CACHE_PATH = "/vol/cache"
@ -18,7 +18,7 @@ def download_models():
"""
import diffusers
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
@ -45,6 +45,7 @@ stub_image = Image.from_dockerfile(
download_models,
secrets=[Secret.from_dotenv(__file__)],
)
stub = Stub("stable-diffusion-cli")
stub.image = stub_image
@ -79,17 +80,19 @@ class StableDiffusion:
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
).to("cuda")
self.upscaler.enable_xformers_memory_efficient_attention()
# model_id = "stabilityai/stable-diffusion-x4-upscaler"
# self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
# , revision="fp16", torch_dtype=torch.float16
# ).to("cuda")
# self.upscaler.enable_xformers_memory_efficient_attention()
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
steps: int = 30,
batch_size: int = 1,
height: int = 512,
width: int = 512,
max_embeddings_multiples: int = 1,
) -> list[bytes]:
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
@ -98,13 +101,13 @@ class StableDiffusion:
with torch.inference_mode():
with torch.autocast("cuda"):
images = self.pipe(
[prompt] * batch_size,
negative_prompt=[n_prompt] * batch_size,
height=height,
width=width,
num_inference_steps=steps,
[inputs["prompt"]] * int(inputs["batch_size"]),
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
height=inputs["height"],
width=inputs["width"],
num_inference_steps=inputs["steps"],
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
max_embeddings_multiples=inputs["max_embeddings_multiples"],
).images
image_output = []
@ -112,6 +115,19 @@ class StableDiffusion:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
if inputs["upscaler"] != "":
upscaled_images = self.upscaler(
prompt=inputs["prompt"],
image=images,
num_inference_steps=inputs["steps"],
guidance_scale=0,
).images
for image in upscaled_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@ -119,60 +135,40 @@ class StableDiffusion:
def entrypoint(
prompt: str,
n_prompt: str,
samples: int = 5,
steps: int = 30,
batch_size: int = 1,
height: int = 512,
width: int = 512,
samples: int = 5,
batch_size: int = 1,
steps: int = 20,
upscaler: str = "",
):
"""
This function is the entrypoint for the Runway CLI.
The function pass the given prompt to StableDiffusion on Modal,
gets back a list of images and outputs images to local.
The function is called with the following arguments:
- prompt: the prompt to run inference on
- n_prompt: the negative prompt to run inference on
- samples: the number of samples to generate
- steps: the number of steps to run inference for
- batch_size: the batch size to use
- height: the height of the output image
- width: the width of the output image
"""
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
max_embeddings_multiples = 1
token_count = len(prompt.split())
if token_count > 77:
max_embeddings_multiples = token_count // 77 + 1
inputs: dict[str, int | str] = {
"prompt": prompt,
"n_prompt": n_prompt,
"height": height,
"width": width,
"samples": samples,
"batch_size": batch_size,
"steps": steps,
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
# seed=-1
}
print(
f"token_count => {token_count}, max_embeddings_multiples => {max_embeddings_multiples}"
)
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
directory = util.make_directory()
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
if not directory.exists():
directory.mkdir(exist_ok=True, parents=True)
stable_diffusion = StableDiffusion()
sd = StableDiffusion()
for i in range(samples):
start_time = time.time()
images = stable_diffusion.run_inference.call(
prompt,
n_prompt,
steps,
batch_size,
height,
width,
max_embeddings_multiples,
)
images = sd.run_inference.call(inputs)
util.save_images(directory, images, i)
total_time = time.time() - start_time
print(
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
)
for j, image_bytes in enumerate(images):
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
output_path = directory / f"{formatted_time}_{i}_{j}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
util.save_prompts(inputs)

66
util.py Normal file
View File

@ -0,0 +1,66 @@
""" Utility functions for the script. """
import time
from datetime import date
from pathlib import Path
from PIL import Image
OUTPUT_DIRECTORY = "outputs"
DATE_TODAY = date.today().strftime("%Y-%m-%d")
def make_directory() -> Path:
"""
Make a directory for saving outputs.
"""
directory = Path(f"{OUTPUT_DIRECTORY}/{DATE_TODAY}")
if not directory.exists():
directory.mkdir(exist_ok=True, parents=True)
print(f"Make directory: {directory}")
return directory
def save_prompts(inputs: dict):
"""
Save prompts to a file.
"""
prompts_filename = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
with open(
file=f"{OUTPUT_DIRECTORY}/{DATE_TODAY}/prompts_{prompts_filename}.txt", mode="w", encoding="utf-8"
) as file:
for name, value in inputs.items():
file.write(f"{name} = {repr(value)}\n")
print(f"Save prompts: {prompts_filename}.txt")
def count_token(p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
token_count_p = len(p.split())
token_count_n = len(n.split())
if token_count_p >= token_count_n:
token_count = token_count_p
else:
token_count = token_count_n
max_embeddings_multiples = 1
if token_count > 77:
max_embeddings_multiples = token_count // 77 + 1
print(f"token_count: {token_count}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
def save_images(directory: Path, images: list[bytes], i: int):
"""
Save images to a file.
"""
for j, image_bytes in enumerate(images):
formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time()))
output_path = directory / f"{formatted_time}_{i}_{j}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)