Replace realesrgan to the Stable Diffusion latent upscaler. Remove unnecessary libraries.
This commit is contained in:
parent
b1de1d4cb5
commit
d531c25bd0
13
Makefile
13
Makefile
@ -3,12 +3,6 @@
|
|||||||
app:
|
app:
|
||||||
cd ./app && modal deploy __main__.py
|
cd ./app && modal deploy __main__.py
|
||||||
|
|
||||||
# `--upscaler` is a name of upscaler you want to use.
|
|
||||||
# You can use upscalers the below:
|
|
||||||
# - `RealESRGAN_x4plus`
|
|
||||||
# - `RealESRNet_x4plus`
|
|
||||||
# - `RealESRGAN_x4plus_anime_6B`
|
|
||||||
# - `RealESRGAN_x2plus`
|
|
||||||
img_by_sd15_txt2img:
|
img_by_sd15_txt2img:
|
||||||
cd ./cmd && modal run sd15_txt2img.py \
|
cd ./cmd && modal run sd15_txt2img.py \
|
||||||
--prompt "a photograph of an astronaut riding a horse" \
|
--prompt "a photograph of an astronaut riding a horse" \
|
||||||
@ -17,8 +11,7 @@ img_by_sd15_txt2img:
|
|||||||
--width 768 \
|
--width 768 \
|
||||||
--samples 1 \
|
--samples 1 \
|
||||||
--steps 30 \
|
--steps 30 \
|
||||||
--upscaler "RealESRGAN_x2plus" \
|
--use-upscaler "True" \
|
||||||
--use-face-enhancer "False" \
|
|
||||||
--fix-by-controlnet-tile "True" \
|
--fix-by-controlnet-tile "True" \
|
||||||
--output-format "avif"
|
--output-format "avif"
|
||||||
|
|
||||||
@ -28,8 +21,7 @@ img_by_sd15_img2img:
|
|||||||
--n-prompt "" \
|
--n-prompt "" \
|
||||||
--samples 1 \
|
--samples 1 \
|
||||||
--steps 30 \
|
--steps 30 \
|
||||||
--upscaler "RealESRGAN_x2plus" \
|
--use-upscaler "True" \
|
||||||
--use-face-enhancer "False" \
|
|
||||||
--fix-by-controlnet-tile "True" \
|
--fix-by-controlnet-tile "True" \
|
||||||
--output-format "avif" \
|
--output-format "avif" \
|
||||||
--base-image-url "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
--base-image-url "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png"
|
||||||
@ -40,5 +32,4 @@ img_by_sdxl_txt2img:
|
|||||||
--height 1024 \
|
--height 1024 \
|
||||||
--width 1024 \
|
--width 1024 \
|
||||||
--samples 1 \
|
--samples 1 \
|
||||||
--upscaler "RealESRGAN_x2plus" \
|
|
||||||
--output-format "avif"
|
--output-format "avif"
|
||||||
@ -132,8 +132,7 @@ run:
|
|||||||
--samples 1 \
|
--samples 1 \
|
||||||
--steps 30 \
|
--steps 30 \
|
||||||
--seed 12321 |
|
--seed 12321 |
|
||||||
--upscaler "RealESRGAN_x2plus" \
|
--use-upscaler "True" \
|
||||||
--use-face-enhancer "False" \
|
|
||||||
--fix-by-controlnet-tile "True" \
|
--fix-by-controlnet-tile "True" \
|
||||||
--output-fomart "avif"
|
--output-fomart "avif"
|
||||||
```
|
```
|
||||||
|
|||||||
@ -134,8 +134,7 @@ run:
|
|||||||
--samples 1 \
|
--samples 1 \
|
||||||
--steps 30 \
|
--steps 30 \
|
||||||
--seed 12321 |
|
--seed 12321 |
|
||||||
--upscaler "RealESRGAN_x2plus" \
|
--use-upscaler "True" \
|
||||||
--use-face-enhancer "False" \
|
|
||||||
--fix-by-controlnet-tile "True" \
|
--fix-by-controlnet-tile "True" \
|
||||||
--output-fomart "png"
|
--output-fomart "png"
|
||||||
```
|
```
|
||||||
@ -147,7 +146,7 @@ run:
|
|||||||
- samples: 生成する画像の数を指定します。
|
- samples: 生成する画像の数を指定します。
|
||||||
- steps: ステップ数を指定します。
|
- steps: ステップ数を指定します。
|
||||||
- seed: seedを指定します。
|
- seed: seedを指定します。
|
||||||
- upscaler: 画像の解像度を上げるためのアップスケーラーを指定します。
|
- use-upscaler: 画像の解像度を上げるためのアップスケーラーを有効にします。
|
||||||
- fix-by-controlnet-tile: ControlNet 1.1 Tileの利用有無を指定します。有効にすると、崩れた画像を修復しつつ、高解像度な画像を生成します。
|
- fix-by-controlnet-tile: ControlNet 1.1 Tileの利用有無を指定します。有効にすると、崩れた画像を修復しつつ、高解像度な画像を生成します。
|
||||||
- output-format: 出力フォーマットを指定します。avifも指定可能です。
|
- output-format: 出力フォーマットを指定します。avifも指定可能です。
|
||||||
|
|
||||||
|
|||||||
@ -5,10 +5,4 @@ RUN apt-get update \
|
|||||||
&& apt-get autoremove -y \
|
&& apt-get autoremove -y \
|
||||||
&& apt-get clean -y \
|
&& apt-get clean -y \
|
||||||
&& rm -rf /var/lib/apt/lists/* \
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --no-cache-dir \
|
&& pip install -r requirements.txt --extra-index-url https://download.pytorch.org/whl/cu121 --no-cache-dir
|
||||||
&& mkdir -p /vol/cache/esrgan \
|
|
||||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.0/RealESRGAN_x4plus.pth -P /vol/cache/esrgan \
|
|
||||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.1.1/RealESRNet_x4plus.pth -P /vol/cache/esrgan \
|
|
||||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.2.4/RealESRGAN_x4plus_anime_6B.pth -P /vol/cache/esrgan \
|
|
||||||
&& wget --progress=dot:giga https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth -P /vol/cache/esrgan \
|
|
||||||
&& wget --progress=dot:giga https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P /vol/cache/esrgan
|
|
||||||
|
|||||||
@ -1,27 +1,15 @@
|
|||||||
invisible_watermark
|
|
||||||
accelerate
|
|
||||||
diffusers[torch]==0.27.2
|
diffusers[torch]==0.27.2
|
||||||
onnxruntime==1.17.3
|
accelerate
|
||||||
safetensors==0.4.3
|
|
||||||
torch==2.2.2
|
torch==2.2.2
|
||||||
transformers==4.40.0
|
transformers==4.40.0
|
||||||
xformers==0.0.25.post1
|
xformers==0.0.25.post1
|
||||||
|
|
||||||
realesrgan==0.3.0
|
invisible_watermark # To help viewers identify the images as machine-generated.
|
||||||
basicsr>=1.4.2
|
onnxruntime==1.17.3 # ONNX Runtime uses the following optimizations to speed up Stable Diffusion in CUDA.
|
||||||
facexlib>=0.3.0
|
safetensors==0.4.3 # To store tensors safely.
|
||||||
gfpgan>=1.3.8
|
|
||||||
scipy==1.13.0
|
|
||||||
opencv-python
|
|
||||||
Pillow
|
|
||||||
pillow-avif-plugin
|
|
||||||
torchvision==0.17.2
|
|
||||||
tqdm
|
|
||||||
|
|
||||||
controlnet_aux
|
controlnet_aux
|
||||||
pyyaml
|
|
||||||
|
|
||||||
# Use the below in 'download_from_original_stable_diffusion_ckpt'.
|
|
||||||
omegaconf==2.3.0
|
|
||||||
|
|
||||||
|
Pillow
|
||||||
|
pillow-avif-plugin # To save images in AVIF format.
|
||||||
|
pyyaml # To read the configuration file by written YAML.
|
||||||
peft
|
peft
|
||||||
12
app/setup.py
12
app/setup.py
@ -9,6 +9,7 @@ BASE_CACHE_PATH = "/vol/cache"
|
|||||||
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
|
||||||
BASE_CACHE_PATH_TEXTUAL_INVERSION = "/vol/cache/textual_inversion"
|
BASE_CACHE_PATH_TEXTUAL_INVERSION = "/vol/cache/textual_inversion"
|
||||||
BASE_CACHE_PATH_CONTROLNET = "/vol/cache/controlnet"
|
BASE_CACHE_PATH_CONTROLNET = "/vol/cache/controlnet"
|
||||||
|
BASE_CACHE_PATH_UPSCALER = "/vol/cache/upscaler"
|
||||||
|
|
||||||
|
|
||||||
def download_file(url, file_name, file_path):
|
def download_file(url, file_name, file_path):
|
||||||
@ -25,6 +26,15 @@ def download_file(url, file_name, file_path):
|
|||||||
f.write(downloaded)
|
f.write(downloaded)
|
||||||
|
|
||||||
|
|
||||||
|
def download_upscaler():
|
||||||
|
"""
|
||||||
|
Download the stabilityai/sd-x2-latent-upscaler.
|
||||||
|
"""
|
||||||
|
model_id = "stabilityai/sd-x2-latent-upscaler"
|
||||||
|
upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(model_id)
|
||||||
|
upscaler.save_pretrained(BASE_CACHE_PATH_UPSCALER, safe_serialization=True)
|
||||||
|
|
||||||
|
|
||||||
def download_controlnet(name: str, repo_id: str, token: str):
|
def download_controlnet(name: str, repo_id: str, token: str):
|
||||||
"""
|
"""
|
||||||
Download a controlnet.
|
Download a controlnet.
|
||||||
@ -130,6 +140,8 @@ def build_image():
|
|||||||
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
download_upscaler()
|
||||||
|
|
||||||
|
|
||||||
app = App("stable-diffusion-cli")
|
app = App("stable-diffusion-cli")
|
||||||
base_stub = Image.from_dockerfile(
|
base_stub = Image.from_dockerfile(
|
||||||
|
|||||||
@ -10,6 +10,7 @@ from setup import (
|
|||||||
BASE_CACHE_PATH_CONTROLNET,
|
BASE_CACHE_PATH_CONTROLNET,
|
||||||
BASE_CACHE_PATH_LORA,
|
BASE_CACHE_PATH_LORA,
|
||||||
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
BASE_CACHE_PATH_TEXTUAL_INVERSION,
|
||||||
|
BASE_CACHE_PATH_UPSCALER,
|
||||||
app,
|
app,
|
||||||
)
|
)
|
||||||
|
|
||||||
@ -53,6 +54,11 @@ class SD15:
|
|||||||
)
|
)
|
||||||
# self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
|
# self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
|
||||||
|
|
||||||
|
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
|
||||||
|
BASE_CACHE_PATH_UPSCALER,
|
||||||
|
torch_dtype=torch.float16,
|
||||||
|
)
|
||||||
|
|
||||||
vae = config.get("vae")
|
vae = config.get("vae")
|
||||||
if vae is not None:
|
if vae is not None:
|
||||||
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
|
||||||
@ -133,8 +139,7 @@ class SD15:
|
|||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
steps: int = 30,
|
steps: int = 30,
|
||||||
seed: int = 1,
|
seed: int = 1,
|
||||||
upscaler: str = "",
|
use_upscaler: bool = False,
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
fix_by_controlnet_tile: bool = False,
|
fix_by_controlnet_tile: bool = False,
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
) -> list[bytes]:
|
) -> list[bytes]:
|
||||||
@ -187,16 +192,18 @@ class SD15:
|
|||||||
generated_images.extend(fixed_by_controlnet)
|
generated_images.extend(fixed_by_controlnet)
|
||||||
base_images = fixed_by_controlnet
|
base_images = fixed_by_controlnet
|
||||||
|
|
||||||
# TODO: Upscaler stopped working due to update of dependent packages. Replace with diffusers upscaler.
|
if use_upscaler:
|
||||||
# if upscaler != "":
|
self.upscaler.to("cuda")
|
||||||
# upscaled = self._upscale(
|
self.upscaler.enable_xformers_memory_efficient_attention()
|
||||||
# base_images=base_images,
|
upscaled = self.upscaler(
|
||||||
# half_precision=False,
|
prompt=prompt,
|
||||||
# tile=700,
|
negative_prompt=n_prompt,
|
||||||
# upscaler=upscaler,
|
image=base_images[0],
|
||||||
# use_face_enhancer=use_face_enhancer,
|
num_inference_steps=steps,
|
||||||
# )
|
guidance_scale=0,
|
||||||
# generated_images.extend(upscaled)
|
generator=generator,
|
||||||
|
).images
|
||||||
|
generated_images.extend(upscaled)
|
||||||
|
|
||||||
image_output = []
|
image_output = []
|
||||||
for image in generated_images:
|
for image in generated_images:
|
||||||
@ -214,8 +221,7 @@ class SD15:
|
|||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
steps: int = 30,
|
steps: int = 30,
|
||||||
seed: int = 1,
|
seed: int = 1,
|
||||||
upscaler: str = "",
|
use_upscaler: bool = False,
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
fix_by_controlnet_tile: bool = False,
|
fix_by_controlnet_tile: bool = False,
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
base_image_url: str = "",
|
base_image_url: str = "",
|
||||||
@ -269,14 +275,17 @@ class SD15:
|
|||||||
generated_images.extend(fixed_by_controlnet)
|
generated_images.extend(fixed_by_controlnet)
|
||||||
base_images = fixed_by_controlnet
|
base_images = fixed_by_controlnet
|
||||||
|
|
||||||
if upscaler != "":
|
if use_upscaler:
|
||||||
upscaled = self._upscale(
|
self.upscaler.to("cuda")
|
||||||
base_images=base_images,
|
self.upscaler.enable_xformers_memory_efficient_attention()
|
||||||
half_precision=False,
|
upscaled = self.upscaler(
|
||||||
tile=700,
|
prompt=prompt,
|
||||||
upscaler=upscaler,
|
negative_prompt=n_prompt,
|
||||||
use_face_enhancer=use_face_enhancer,
|
image=base_images[0],
|
||||||
)
|
num_inference_steps=steps,
|
||||||
|
guidance_scale=0,
|
||||||
|
generator=generator,
|
||||||
|
).images
|
||||||
generated_images.extend(upscaled)
|
generated_images.extend(upscaled)
|
||||||
|
|
||||||
image_output = []
|
image_output = []
|
||||||
@ -292,81 +301,3 @@ class SD15:
|
|||||||
width, height = image.size
|
width, height = image.size
|
||||||
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def _upscale(
|
|
||||||
self,
|
|
||||||
base_images: list[PIL.Image],
|
|
||||||
half_precision: bool = False,
|
|
||||||
tile: int = 0,
|
|
||||||
tile_pad: int = 10,
|
|
||||||
pre_pad: int = 0,
|
|
||||||
upscaler: str = "",
|
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
) -> list[PIL.Image]:
|
|
||||||
"""
|
|
||||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
|
||||||
The upscaler can be selected from the following list:
|
|
||||||
- `RealESRGAN_x4plus`
|
|
||||||
- `RealESRNet_x4plus`
|
|
||||||
- `RealESRGAN_x4plus_anime_6B`
|
|
||||||
- `RealESRGAN_x2plus`
|
|
||||||
https://github.com/xinntao/Real-ESRGAN
|
|
||||||
"""
|
|
||||||
import numpy
|
|
||||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
||||||
from gfpgan import GFPGANer
|
|
||||||
from realesrgan import RealESRGANer
|
|
||||||
|
|
||||||
model_name = upscaler
|
|
||||||
if model_name == "RealESRGAN_x4plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRNet_x4plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRGAN_x2plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
||||||
netscale = 2
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Model name not supported")
|
|
||||||
|
|
||||||
upsampler = RealESRGANer(
|
|
||||||
scale=netscale,
|
|
||||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
|
||||||
dni_weight=None,
|
|
||||||
model=upscale_model,
|
|
||||||
tile=tile,
|
|
||||||
tile_pad=tile_pad,
|
|
||||||
pre_pad=pre_pad,
|
|
||||||
half=half_precision,
|
|
||||||
gpu_id=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
if use_face_enhancer:
|
|
||||||
face_enhancer = GFPGANer(
|
|
||||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
|
||||||
upscale=netscale,
|
|
||||||
arch="clean",
|
|
||||||
channel_multiplier=2,
|
|
||||||
bg_upsampler=upsampler,
|
|
||||||
)
|
|
||||||
|
|
||||||
upscaled_imgs = []
|
|
||||||
for img in base_images:
|
|
||||||
img = numpy.array(img)
|
|
||||||
if use_face_enhancer:
|
|
||||||
_, _, enhance_result = face_enhancer.enhance(
|
|
||||||
img,
|
|
||||||
has_aligned=False,
|
|
||||||
only_center_face=False,
|
|
||||||
paste_back=True,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
enhance_result, _ = upsampler.enhance(img)
|
|
||||||
|
|
||||||
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
|
||||||
|
|
||||||
return upscaled_imgs
|
|
||||||
|
|||||||
@ -96,8 +96,7 @@ class SDXLTxt2Img:
|
|||||||
width: int = 1024,
|
width: int = 1024,
|
||||||
steps: int = 30,
|
steps: int = 30,
|
||||||
seed: int = 1,
|
seed: int = 1,
|
||||||
upscaler: str = "",
|
use_upscaler: bool = False,
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
) -> list[bytes]:
|
) -> list[bytes]:
|
||||||
"""
|
"""
|
||||||
@ -157,15 +156,14 @@ class SDXLTxt2Img:
|
|||||||
# generated_images.extend(fixed_by_controlnet)
|
# generated_images.extend(fixed_by_controlnet)
|
||||||
# base_images = fixed_by_controlnet
|
# base_images = fixed_by_controlnet
|
||||||
|
|
||||||
if upscaler != "":
|
# if use_upscaler:
|
||||||
upscaled = self._upscale(
|
# upscaled = self._upscale(
|
||||||
base_images=base_images,
|
# base_images=base_images,
|
||||||
half_precision=False,
|
# half_precision=False,
|
||||||
tile=700,
|
# tile=700,
|
||||||
upscaler=upscaler,
|
# upscaler=upscaler,
|
||||||
use_face_enhancer=use_face_enhancer,
|
# )
|
||||||
)
|
# generated_images.extend(upscaled)
|
||||||
generated_images.extend(upscaled)
|
|
||||||
|
|
||||||
image_output = []
|
image_output = []
|
||||||
for image in generated_images:
|
for image in generated_images:
|
||||||
@ -180,82 +178,3 @@ class SDXLTxt2Img:
|
|||||||
width, height = image.size
|
width, height = image.size
|
||||||
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||||
return img
|
return img
|
||||||
|
|
||||||
def _upscale(
|
|
||||||
self,
|
|
||||||
base_images: list[PIL.Image],
|
|
||||||
half_precision: bool = False,
|
|
||||||
tile: int = 0,
|
|
||||||
tile_pad: int = 10,
|
|
||||||
pre_pad: int = 0,
|
|
||||||
upscaler: str = "",
|
|
||||||
use_face_enhancer: bool = False,
|
|
||||||
) -> list[PIL.Image]:
|
|
||||||
"""
|
|
||||||
Upscale the generated images by the upscaler when `upscaler` is selected.
|
|
||||||
The upscaler can be selected from the following list:
|
|
||||||
- `RealESRGAN_x4plus`
|
|
||||||
- `RealESRNet_x4plus`
|
|
||||||
- `RealESRGAN_x4plus_anime_6B`
|
|
||||||
- `RealESRGAN_x2plus`
|
|
||||||
https://github.com/xinntao/Real-ESRGAN
|
|
||||||
"""
|
|
||||||
import numpy
|
|
||||||
from basicsr.archs.rrdbnet_arch import RRDBNet
|
|
||||||
from gfpgan import GFPGANer
|
|
||||||
from realesrgan import RealESRGANer
|
|
||||||
from tqdm import tqdm
|
|
||||||
|
|
||||||
model_name = upscaler
|
|
||||||
if model_name == "RealESRGAN_x4plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRNet_x4plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRGAN_x4plus_anime_6B":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
|
|
||||||
netscale = 4
|
|
||||||
elif model_name == "RealESRGAN_x2plus":
|
|
||||||
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
|
|
||||||
netscale = 2
|
|
||||||
else:
|
|
||||||
raise NotImplementedError("Model name not supported")
|
|
||||||
|
|
||||||
upsampler = RealESRGANer(
|
|
||||||
scale=netscale,
|
|
||||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
|
|
||||||
dni_weight=None,
|
|
||||||
model=upscale_model,
|
|
||||||
tile=tile,
|
|
||||||
tile_pad=tile_pad,
|
|
||||||
pre_pad=pre_pad,
|
|
||||||
half=half_precision,
|
|
||||||
gpu_id=None,
|
|
||||||
)
|
|
||||||
|
|
||||||
if use_face_enhancer:
|
|
||||||
face_enhancer = GFPGANer(
|
|
||||||
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
|
|
||||||
upscale=netscale,
|
|
||||||
arch="clean",
|
|
||||||
channel_multiplier=2,
|
|
||||||
bg_upsampler=upsampler,
|
|
||||||
)
|
|
||||||
|
|
||||||
upscaled_imgs = []
|
|
||||||
for img in base_images:
|
|
||||||
img = numpy.array(img)
|
|
||||||
if use_face_enhancer:
|
|
||||||
_, _, enhance_result = face_enhancer.enhance(
|
|
||||||
img,
|
|
||||||
has_aligned=False,
|
|
||||||
only_center_face=False,
|
|
||||||
paste_back=True,
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
enhance_result, _ = upsampler.enhance(img)
|
|
||||||
|
|
||||||
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
|
|
||||||
|
|
||||||
return upscaled_imgs
|
|
||||||
|
|||||||
@ -15,8 +15,7 @@ def main(
|
|||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
steps: int = 20,
|
steps: int = 20,
|
||||||
seed: int = -1,
|
seed: int = -1,
|
||||||
upscaler: str = "",
|
use_upscaler: str = "False",
|
||||||
use_face_enhancer: str = "False",
|
|
||||||
fix_by_controlnet_tile: str = "False",
|
fix_by_controlnet_tile: str = "False",
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
base_image_url: str = "",
|
base_image_url: str = "",
|
||||||
@ -38,8 +37,7 @@ def main(
|
|||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
seed=seed_generated,
|
seed=seed_generated,
|
||||||
upscaler=upscaler,
|
use_upscaler=use_upscaler == "True",
|
||||||
use_face_enhancer=use_face_enhancer == "True",
|
|
||||||
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
||||||
output_format=output_format,
|
output_format=output_format,
|
||||||
base_image_url=base_image_url,
|
base_image_url=base_image_url,
|
||||||
|
|||||||
@ -17,8 +17,7 @@ def main(
|
|||||||
batch_size: int = 1,
|
batch_size: int = 1,
|
||||||
steps: int = 20,
|
steps: int = 20,
|
||||||
seed: int = -1,
|
seed: int = -1,
|
||||||
upscaler: str = "",
|
use_upscaler: str = "",
|
||||||
use_face_enhancer: str = "False",
|
|
||||||
fix_by_controlnet_tile: str = "False",
|
fix_by_controlnet_tile: str = "False",
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
):
|
):
|
||||||
@ -41,8 +40,7 @@ def main(
|
|||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
seed=seed_generated,
|
seed=seed_generated,
|
||||||
upscaler=upscaler,
|
use_upscaler=use_upscaler == "True",
|
||||||
use_face_enhancer=use_face_enhancer == "True",
|
|
||||||
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
fix_by_controlnet_tile=fix_by_controlnet_tile == "True",
|
||||||
output_format=output_format,
|
output_format=output_format,
|
||||||
)
|
)
|
||||||
|
|||||||
@ -16,8 +16,7 @@ def main(
|
|||||||
samples: int = 5,
|
samples: int = 5,
|
||||||
steps: int = 20,
|
steps: int = 20,
|
||||||
seed: int = -1,
|
seed: int = -1,
|
||||||
upscaler: str = "",
|
use_upscaler: str = "False",
|
||||||
use_face_enhancer: str = "False",
|
|
||||||
output_format: str = "png",
|
output_format: str = "png",
|
||||||
):
|
):
|
||||||
"""
|
"""
|
||||||
@ -38,8 +37,7 @@ def main(
|
|||||||
width=width,
|
width=width,
|
||||||
steps=steps,
|
steps=steps,
|
||||||
seed=seed_generated,
|
seed=seed_generated,
|
||||||
upscaler=upscaler,
|
use_upscaler=use_upscaler == "True",
|
||||||
use_face_enhancer=use_face_enhancer == "True",
|
|
||||||
output_format=output_format,
|
output_format=output_format,
|
||||||
)
|
)
|
||||||
util.save_images(directory, images, seed_generated, i, output_format)
|
util.save_images(directory, images, seed_generated, i, output_format)
|
||||||
|
|||||||
Loading…
x
Reference in New Issue
Block a user