Merge pull request #80 from hodanov/feature/repair_modal_deprecation_warning

Modify to use @enter().
This commit is contained in:
hodanov 2024-03-13 23:13:26 +09:00 committed by GitHub
commit d6c3cca592
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
3 changed files with 112 additions and 20 deletions

View File

@ -22,4 +22,6 @@ controlnet_aux
pyyaml
# Use the below in 'download_from_original_stable_diffusion_ckpt'.
omegaconf==2.3.0
omegaconf==2.3.0
peft

View File

@ -4,7 +4,7 @@ import io
import os
import PIL.Image
from modal import Secret, method
from modal import Secret, enter, method
from setup import (
BASE_CACHE_PATH,
BASE_CACHE_PATH_CONTROLNET,
@ -23,7 +23,8 @@ class SD15:
SD15 is a class that runs inference using Stable Diffusion 1.5.
"""
def __enter__(self):
@enter()
def _setup(self):
import diffusers
import torch
import yaml
@ -69,6 +70,7 @@ class SD15:
else:
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
self.pipe.load_lora_weights(".", weight_name=path)
self.pipe.fuse_lora()
textual_inversions = config.get("textual_inversions")
if textual_inversions is not None:

View File

@ -4,8 +4,8 @@ import io
import os
import PIL.Image
from modal import Secret, method
from setup import BASE_CACHE_PATH, stub
from modal import Secret, enter, method
from setup import BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET, stub
@stub.cls(
@ -17,7 +17,8 @@ class SDXLTxt2Img:
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
@enter()
def _setup(self):
import diffusers
import torch
import yaml
@ -38,23 +39,67 @@ class SDXLTxt2Img:
variant="fp16",
)
self.refiner_cache_path = self.cache_path + "-refiner"
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
self.refiner_cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
# self.refiner_cache_path = self.cache_path + "-refiner"
# self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
# self.refiner_cache_path,
# torch_dtype=torch.float16,
# use_safetensors=True,
# variant="fp16",
# )
# controlnets = config.get("controlnets")
# if controlnets is not None:
# for controlnet in controlnets:
# path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
# controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
# self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
# self.cache_path,
# controlnet=controlnet,
# custom_pipeline="lpw_stable_diffusion",
# scheduler=self.pipe.scheduler,
# vae=self.pipe.vae,
# torch_dtype=torch.float16,
# use_safetensors=True,
# )
def _count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
if token_size_p <= token_size_n:
token_size = token_size_n
max_embeddings_multiples = 1
max_length = tokenizer.model_max_length - 2
if token_size > max_length:
max_embeddings_multiples = token_size // max_length + 1
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
height: int = 1024,
width: int = 1024,
batch_size: int = 1,
steps: int = 30,
seed: int = 1,
upscaler: str = "",
use_face_enhancer: bool = False,
fix_by_controlnet_tile: bool = False,
output_format: str = "png",
) -> list[bytes]:
"""
@ -67,20 +112,57 @@ class SDXLTxt2Img:
self.pipe.to("cuda")
generated_images = self.pipe(
prompt=prompt,
negative_prompt=n_prompt,
height=height,
width=width,
generator=generator,
).images
base_images = generated_images
for image in base_images:
self.refiner.to("cuda")
refined_images = self.refiner(
prompt=prompt,
image=image,
).images
generated_images.extend(refined_images)
base_images = refined_images
# for image in base_images:
# image = self._resize_image(image=image, scale_factor=2)
# self.refiner.to("cuda")
# refined_images = self.refiner(
# prompt=prompt,
# negative_prompt=n_prompt,
# num_inference_steps=steps,
# strength=0.1,
# # guidance_scale=7.5,
# generator=generator,
# image=image,
# ).images
# generated_images.extend(refined_images)
# base_images = refined_images
"""
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
"""
# if fix_by_controlnet_tile:
# max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
# print("========================確認用========================")
# print("Step1")
# self.controlnet_pipe.to("cuda")
# self.controlnet_pipe.enable_vae_tiling()
# self.controlnet_pipe.enable_xformers_memory_efficient_attention()
# print("Step2")
# for image in base_images:
# image = self._resize_image(image=image, scale_factor=2)
# print("Step3")
# with torch.autocast("cuda"):
# print("Step4")
# fixed_by_controlnet = self.controlnet_pipe(
# prompt=prompt * batch_size,
# negative_prompt=n_prompt * batch_size,
# num_inference_steps=steps,
# strength=0.3,
# guidance_scale=7.5,
# max_embeddings_multiples=max_embeddings_multiples,
# generator=generator,
# image=image,
# ).images
# print("Step5")
# generated_images.extend(fixed_by_controlnet)
# base_images = fixed_by_controlnet
if upscaler != "":
upscaled = self._upscale(
@ -100,6 +182,12 @@ class SDXLTxt2Img:
return image_output
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
image = image.convert("RGB")
width, height = image.size
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
return img
def _upscale(
self,
base_images: list[PIL.Image],