Merge pull request #80 from hodanov/feature/repair_modal_deprecation_warning
Modify to use @enter().
This commit is contained in:
commit
d6c3cca592
@ -22,4 +22,6 @@ controlnet_aux
|
||||
pyyaml
|
||||
|
||||
# Use the below in 'download_from_original_stable_diffusion_ckpt'.
|
||||
omegaconf==2.3.0
|
||||
omegaconf==2.3.0
|
||||
|
||||
peft
|
||||
@ -4,7 +4,7 @@ import io
|
||||
import os
|
||||
|
||||
import PIL.Image
|
||||
from modal import Secret, method
|
||||
from modal import Secret, enter, method
|
||||
from setup import (
|
||||
BASE_CACHE_PATH,
|
||||
BASE_CACHE_PATH_CONTROLNET,
|
||||
@ -23,7 +23,8 @@ class SD15:
|
||||
SD15 is a class that runs inference using Stable Diffusion 1.5.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def _setup(self):
|
||||
import diffusers
|
||||
import torch
|
||||
import yaml
|
||||
@ -69,6 +70,7 @@ class SD15:
|
||||
else:
|
||||
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
|
||||
self.pipe.load_lora_weights(".", weight_name=path)
|
||||
self.pipe.fuse_lora()
|
||||
|
||||
textual_inversions = config.get("textual_inversions")
|
||||
if textual_inversions is not None:
|
||||
|
||||
@ -4,8 +4,8 @@ import io
|
||||
import os
|
||||
|
||||
import PIL.Image
|
||||
from modal import Secret, method
|
||||
from setup import BASE_CACHE_PATH, stub
|
||||
from modal import Secret, enter, method
|
||||
from setup import BASE_CACHE_PATH, BASE_CACHE_PATH_CONTROLNET, stub
|
||||
|
||||
|
||||
@stub.cls(
|
||||
@ -17,7 +17,8 @@ class SDXLTxt2Img:
|
||||
A class that wraps the Stable Diffusion pipeline and scheduler.
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
@enter()
|
||||
def _setup(self):
|
||||
import diffusers
|
||||
import torch
|
||||
import yaml
|
||||
@ -38,23 +39,67 @@ class SDXLTxt2Img:
|
||||
variant="fp16",
|
||||
)
|
||||
|
||||
self.refiner_cache_path = self.cache_path + "-refiner"
|
||||
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
||||
self.refiner_cache_path,
|
||||
torch_dtype=torch.float16,
|
||||
use_safetensors=True,
|
||||
variant="fp16",
|
||||
# self.refiner_cache_path = self.cache_path + "-refiner"
|
||||
# self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
|
||||
# self.refiner_cache_path,
|
||||
# torch_dtype=torch.float16,
|
||||
# use_safetensors=True,
|
||||
# variant="fp16",
|
||||
# )
|
||||
|
||||
# controlnets = config.get("controlnets")
|
||||
# if controlnets is not None:
|
||||
# for controlnet in controlnets:
|
||||
# path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
|
||||
# controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
|
||||
# self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
|
||||
# self.cache_path,
|
||||
# controlnet=controlnet,
|
||||
# custom_pipeline="lpw_stable_diffusion",
|
||||
# scheduler=self.pipe.scheduler,
|
||||
# vae=self.pipe.vae,
|
||||
# torch_dtype=torch.float16,
|
||||
# use_safetensors=True,
|
||||
# )
|
||||
|
||||
def _count_token(self, p: str, n: str) -> int:
|
||||
"""
|
||||
Count the number of tokens in the prompt and negative prompt.
|
||||
"""
|
||||
from transformers import CLIPTokenizer
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
self.cache_path,
|
||||
subfolder="tokenizer",
|
||||
)
|
||||
token_size_p = len(tokenizer.tokenize(p))
|
||||
token_size_n = len(tokenizer.tokenize(n))
|
||||
token_size = token_size_p
|
||||
if token_size_p <= token_size_n:
|
||||
token_size = token_size_n
|
||||
|
||||
max_embeddings_multiples = 1
|
||||
max_length = tokenizer.model_max_length - 2
|
||||
if token_size > max_length:
|
||||
max_embeddings_multiples = token_size // max_length + 1
|
||||
|
||||
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
|
||||
|
||||
return max_embeddings_multiples
|
||||
|
||||
@method()
|
||||
def run_inference(
|
||||
self,
|
||||
prompt: str,
|
||||
n_prompt: str,
|
||||
height: int = 1024,
|
||||
width: int = 1024,
|
||||
batch_size: int = 1,
|
||||
steps: int = 30,
|
||||
seed: int = 1,
|
||||
upscaler: str = "",
|
||||
use_face_enhancer: bool = False,
|
||||
fix_by_controlnet_tile: bool = False,
|
||||
output_format: str = "png",
|
||||
) -> list[bytes]:
|
||||
"""
|
||||
@ -67,20 +112,57 @@ class SDXLTxt2Img:
|
||||
self.pipe.to("cuda")
|
||||
generated_images = self.pipe(
|
||||
prompt=prompt,
|
||||
negative_prompt=n_prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
generator=generator,
|
||||
).images
|
||||
base_images = generated_images
|
||||
|
||||
for image in base_images:
|
||||
self.refiner.to("cuda")
|
||||
refined_images = self.refiner(
|
||||
prompt=prompt,
|
||||
image=image,
|
||||
).images
|
||||
generated_images.extend(refined_images)
|
||||
base_images = refined_images
|
||||
# for image in base_images:
|
||||
# image = self._resize_image(image=image, scale_factor=2)
|
||||
# self.refiner.to("cuda")
|
||||
# refined_images = self.refiner(
|
||||
# prompt=prompt,
|
||||
# negative_prompt=n_prompt,
|
||||
# num_inference_steps=steps,
|
||||
# strength=0.1,
|
||||
# # guidance_scale=7.5,
|
||||
# generator=generator,
|
||||
# image=image,
|
||||
# ).images
|
||||
# generated_images.extend(refined_images)
|
||||
# base_images = refined_images
|
||||
"""
|
||||
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
|
||||
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
|
||||
"""
|
||||
# if fix_by_controlnet_tile:
|
||||
# max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
|
||||
# print("========================確認用========================")
|
||||
# print("Step1")
|
||||
# self.controlnet_pipe.to("cuda")
|
||||
# self.controlnet_pipe.enable_vae_tiling()
|
||||
# self.controlnet_pipe.enable_xformers_memory_efficient_attention()
|
||||
# print("Step2")
|
||||
# for image in base_images:
|
||||
# image = self._resize_image(image=image, scale_factor=2)
|
||||
# print("Step3")
|
||||
# with torch.autocast("cuda"):
|
||||
# print("Step4")
|
||||
# fixed_by_controlnet = self.controlnet_pipe(
|
||||
# prompt=prompt * batch_size,
|
||||
# negative_prompt=n_prompt * batch_size,
|
||||
# num_inference_steps=steps,
|
||||
# strength=0.3,
|
||||
# guidance_scale=7.5,
|
||||
# max_embeddings_multiples=max_embeddings_multiples,
|
||||
# generator=generator,
|
||||
# image=image,
|
||||
# ).images
|
||||
# print("Step5")
|
||||
# generated_images.extend(fixed_by_controlnet)
|
||||
# base_images = fixed_by_controlnet
|
||||
|
||||
if upscaler != "":
|
||||
upscaled = self._upscale(
|
||||
@ -100,6 +182,12 @@ class SDXLTxt2Img:
|
||||
|
||||
return image_output
|
||||
|
||||
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
|
||||
image = image.convert("RGB")
|
||||
width, height = image.size
|
||||
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
|
||||
return img
|
||||
|
||||
def _upscale(
|
||||
self,
|
||||
base_images: list[PIL.Image],
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user