from __future__ import annotations import io import os import PIL.Image from modal import Secret, enter, method from setup import BASE_CACHE_PATH, app @app.cls( gpu="A10G", secrets=[Secret.from_dotenv(__file__)], ) class SDXLTxt2Img: """ A class that wraps the Stable Diffusion pipeline and scheduler. """ @enter() def _setup(self): import diffusers import torch import yaml config = {} with open("/config.yml", "r") as file: config = yaml.safe_load(file) self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"]) if os.path.exists(self.cache_path): print(f"The directory '{self.cache_path}' exists.") else: print(f"The directory '{self.cache_path}' does not exist.") self.pipe = diffusers.DiffusionPipeline.from_pretrained( self.cache_path, torch_dtype=torch.float16, use_safetensors=True, ) self.upscaler_cache_path = self.cache_path self.upscaler = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained( self.upscaler_cache_path, torch_dtype=torch.float16, use_safetensors=True, ) def _count_token(self, p: str, n: str) -> int: """ Count the number of tokens in the prompt and negative prompt. """ from transformers import CLIPTokenizer tokenizer = CLIPTokenizer.from_pretrained( self.cache_path, subfolder="tokenizer", ) token_size_p = len(tokenizer.tokenize(p)) token_size_n = len(tokenizer.tokenize(n)) token_size = token_size_p if token_size_p <= token_size_n: token_size = token_size_n max_embeddings_multiples = 1 max_length = tokenizer.model_max_length - 2 if token_size > max_length: max_embeddings_multiples = token_size // max_length + 1 print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}") return max_embeddings_multiples @method() def run_inference( self, prompt: str, n_prompt: str, height: int = 1024, width: int = 1024, steps: int = 30, seed: int = 1, use_upscaler: bool = False, output_format: str = "png", ) -> list[bytes]: """ Runs the Stable Diffusion pipeline on the given prompt and outputs images. """ import pillow_avif # noqa import torch generator = torch.Generator("cuda").manual_seed(seed) self.pipe.to("cuda") self.pipe.enable_vae_tiling() self.pipe.enable_xformers_memory_efficient_attention() generated_images = self.pipe( prompt=prompt, negative_prompt=n_prompt, guidance_scale=7, height=height, width=width, generator=generator, num_inference_steps=steps, ).images if use_upscaler: base_images = generated_images for image in base_images: image = self._resize_image(image=image, scale_factor=2) self.upscaler.to("cuda") self.upscaler.enable_vae_tiling() self.upscaler.enable_xformers_memory_efficient_attention() upscaled_images = self.upscaler( prompt=prompt, negative_prompt=n_prompt, num_inference_steps=steps, strength=0.3, guidance_scale=7, generator=generator, image=image, ).images generated_images.extend(upscaled_images) image_output = [] for image in generated_images: with io.BytesIO() as buf: image.save(buf, format=output_format) image_output.append(buf.getvalue()) return image_output def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image: image = image.convert("RGB") width, height = image.size img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS) return img