from __future__ import annotations import io import os import time from modal import Image, Mount, Secret, Stub, method import util BASE_CACHE_PATH = "/vol/cache" def download_models(): """ Downloads the model from Hugging Face and saves it to the cache path using diffusers.StableDiffusionPipeline.from_pretrained(). """ import diffusers hugging_face_token = os.environ["HUGGING_FACE_TOKEN"] model_repo_id = os.environ["MODEL_REPO_ID"] cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"]) scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained( model_repo_id, subfolder="scheduler", use_auth_token=hugging_face_token, cache_dir=cache_path, ) scheduler.save_pretrained(cache_path, safe_serialization=True) pipe = diffusers.StableDiffusionPipeline.from_pretrained( model_repo_id, use_auth_token=hugging_face_token, cache_dir=cache_path, ) pipe.save_pretrained(cache_path, safe_serialization=True) stub_image = Image.from_dockerfile( path="./Dockerfile", context_mount=Mount.from_local_file("./requirements.txt"), ).run_function( download_models, secrets=[Secret.from_dotenv(__file__)], ) stub = Stub("stable-diffusion-cli") stub.image = stub_image @stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)]) class StableDiffusion: """ A class that wraps the Stable Diffusion pipeline and scheduler. """ def __enter__(self): import diffusers import torch cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"]) if os.path.exists(cache_path): print(f"The directory '{cache_path}' exists.") else: print(f"The directory '{cache_path}' does not exist. Download models...") download_models() torch.backends.cuda.matmul.allow_tf32 = True scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained( cache_path, subfolder="scheduler", ) self.pipe = diffusers.StableDiffusionPipeline.from_pretrained( cache_path, scheduler=scheduler, custom_pipeline="lpw_stable_diffusion", ).to("cuda") self.pipe.enable_xformers_memory_efficient_attention() self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained( "stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16 ).to("cuda") self.upscaler.enable_xformers_memory_efficient_attention() # model_id = "stabilityai/stable-diffusion-x4-upscaler" # self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained( # , revision="fp16", torch_dtype=torch.float16 # ).to("cuda") # self.upscaler.enable_xformers_memory_efficient_attention() @method() def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]: """ Runs the Stable Diffusion pipeline on the given prompt and outputs images. """ import torch with torch.inference_mode(): with torch.autocast("cuda"): images = self.pipe( [inputs["prompt"]] * int(inputs["batch_size"]), negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]), height=inputs["height"], width=inputs["width"], num_inference_steps=inputs["steps"], guidance_scale=7.5, max_embeddings_multiples=inputs["max_embeddings_multiples"], ).images image_output = [] for image in images: with io.BytesIO() as buf: image.save(buf, format="PNG") image_output.append(buf.getvalue()) if inputs["upscaler"] != "": upscaled_images = self.upscaler( prompt=inputs["prompt"], image=images, num_inference_steps=inputs["steps"], guidance_scale=0, ).images for image in upscaled_images: with io.BytesIO() as buf: image.save(buf, format="PNG") image_output.append(buf.getvalue()) return image_output @stub.local_entrypoint() def entrypoint( prompt: str, n_prompt: str, height: int = 512, width: int = 512, samples: int = 5, batch_size: int = 1, steps: int = 20, upscaler: str = "", ): """ This function is the entrypoint for the Runway CLI. The function pass the given prompt to StableDiffusion on Modal, gets back a list of images and outputs images to local. """ inputs: dict[str, int | str] = { "prompt": prompt, "n_prompt": n_prompt, "height": height, "width": width, "samples": samples, "batch_size": batch_size, "steps": steps, "upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler # seed=-1 } inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt) directory = util.make_directory() sd = StableDiffusion() for i in range(samples): start_time = time.time() images = sd.run_inference.call(inputs) util.save_images(directory, images, i) total_time = time.time() - start_time print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).") util.save_prompts(inputs)