from __future__ import annotations import io import os import time from datetime import date from pathlib import Path from modal import Image, Secret, Stub, method, Mount stub = Stub("stable-diffusion-cli") BASE_CACHE_PATH = "/vol/cache" def download_models(): """ Downloads the model from Hugging Face and saves it to the cache path using diffusers.StableDiffusionPipeline.from_pretrained(). """ import diffusers hugging_face_token = os.environ["HUGGINGFACE_TOKEN"] model_repo_id = os.environ["MODEL_REPO_ID"] cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"]) scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained( model_repo_id, subfolder="scheduler", use_auth_token=hugging_face_token, cache_dir=cache_path, ) scheduler.save_pretrained(cache_path, safe_serialization=True) pipe = diffusers.StableDiffusionPipeline.from_pretrained( model_repo_id, use_auth_token=hugging_face_token, cache_dir=cache_path, ) pipe.save_pretrained(cache_path, safe_serialization=True) stub_image = Image.from_dockerfile( path="./Dockerfile", context_mount=Mount.from_local_file("./requirements.txt"), ).run_function( download_models, secrets=[Secret.from_dotenv(__file__)], ) stub.image = stub_image @stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)]) class StableDiffusion: """ A class that wraps the Stable Diffusion pipeline and scheduler. """ def __enter__(self): import diffusers import torch cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"]) if os.path.exists(cache_path): print(f"The directory '{cache_path}' exists.") else: print(f"The directory '{cache_path}' does not exist. Download models...") download_models() torch.backends.cuda.matmul.allow_tf32 = True scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained( cache_path, subfolder="scheduler", ) self.pipe = diffusers.StableDiffusionPipeline.from_pretrained( cache_path, scheduler=scheduler, custom_pipeline="lpw_stable_diffusion", safety_checker=None, ).to("cuda") self.pipe.enable_xformers_memory_efficient_attention() @method() def run_inference( self, prompt: str, n_prompt: str, steps: int = 30, batch_size: int = 1, height: int = 512, width: int = 512, max_embeddings_multiples: int = 1, ) -> list[bytes]: """ Runs the Stable Diffusion pipeline on the given prompt and outputs images. """ import torch with torch.inference_mode(): with torch.autocast("cuda"): images = self.pipe( [prompt] * batch_size, negative_prompt=[n_prompt] * batch_size, height=height, width=width, num_inference_steps=steps, guidance_scale=7.5, max_embeddings_multiples=max_embeddings_multiples, ).images # Convert to PNG bytes image_output = [] for image in images: with io.BytesIO() as buf: image.save(buf, format="PNG") image_output.append(buf.getvalue()) return image_output @stub.local_entrypoint() def entrypoint( prompt: str, n_prompt: str, samples: int = 5, steps: int = 30, batch_size: int = 1, height: int = 512, width: int = 512, ): """ This function is the entrypoint for the Runway CLI. The function pass the given prompt to StableDiffusion on Modal, gets back a list of images and outputs images to local. The function is called with the following arguments: - prompt: the prompt to run inference on - n_prompt: the negative prompt to run inference on - samples: the number of samples to generate - steps: the number of steps to run inference for - batch_size: the batch size to use - height: the height of the output image - width: the width of the output image """ print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}") max_embeddings_multiples = 1 token_count = len(prompt.split()) if token_count > 77: max_embeddings_multiples = token_count // 77 + 1 print( f"token_count => {token_count}, max_embeddings_multiples => {max_embeddings_multiples}" ) directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}") if not directory.exists(): directory.mkdir(exist_ok=True, parents=True) stable_diffusion = StableDiffusion() for i in range(samples): start_time = time.time() images = stable_diffusion.run_inference.call( prompt, n_prompt, steps, batch_size, height, width, max_embeddings_multiples, ) total_time = time.time() - start_time print( f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)." ) for j, image_bytes in enumerate(images): formatted_time = time.strftime("%Y%m%d%H%M%S", time.localtime(time.time())) output_path = directory / f"{formatted_time}_{i}_{j}.png" print(f"Saving it to {output_path}") with open(output_path, "wb") as file: file.write(image_bytes)