from __future__ import annotations import io import os import PIL.Image from modal import Secret, method from setup import BASE_CACHE_PATH, stub @stub.cls( gpu="A10G", secrets=[Secret.from_dotenv(__file__)], ) class SDXLTxt2Img: """ A class that wraps the Stable Diffusion pipeline and scheduler. """ def __enter__(self): import diffusers import torch import yaml config = {} with open("/config.yml", "r") as file: config = yaml.safe_load(file) self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"]) if os.path.exists(self.cache_path): print(f"The directory '{self.cache_path}' exists.") else: print(f"The directory '{self.cache_path}' does not exist.") self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained( self.cache_path, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) self.refiner_cache_path = self.cache_path + "-refiner" self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained( self.refiner_cache_path, torch_dtype=torch.float16, use_safetensors=True, variant="fp16", ) @method() def run_inference( self, prompt: str, height: int = 1024, width: int = 1024, seed: int = 1, upscaler: str = "", use_face_enhancer: bool = False, output_format: str = "png", ) -> list[bytes]: """ Runs the Stable Diffusion pipeline on the given prompt and outputs images. """ import pillow_avif # noqa import torch generator = torch.Generator("cuda").manual_seed(seed) self.pipe.to("cuda") generated_images = self.pipe( prompt=prompt, height=height, width=width, generator=generator, ).images base_images = generated_images for image in base_images: self.refiner.to("cuda") refined_images = self.refiner( prompt=prompt, image=image, ).images generated_images.extend(refined_images) base_images = refined_images if upscaler != "": upscaled = self._upscale( base_images=base_images, half_precision=False, tile=700, upscaler=upscaler, use_face_enhancer=use_face_enhancer, ) generated_images.extend(upscaled) image_output = [] for image in generated_images: with io.BytesIO() as buf: image.save(buf, format=output_format) image_output.append(buf.getvalue()) return image_output def _upscale( self, base_images: list[PIL.Image], half_precision: bool = False, tile: int = 0, tile_pad: int = 10, pre_pad: int = 0, upscaler: str = "", use_face_enhancer: bool = False, ) -> list[PIL.Image]: """ Upscale the generated images by the upscaler when `upscaler` is selected. The upscaler can be selected from the following list: - `RealESRGAN_x4plus` - `RealESRNet_x4plus` - `RealESRGAN_x4plus_anime_6B` - `RealESRGAN_x2plus` https://github.com/xinntao/Real-ESRGAN """ import numpy from basicsr.archs.rrdbnet_arch import RRDBNet from gfpgan import GFPGANer from realesrgan import RealESRGANer from tqdm import tqdm model_name = upscaler if model_name == "RealESRGAN_x4plus": upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 elif model_name == "RealESRNet_x4plus": upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4) netscale = 4 elif model_name == "RealESRGAN_x4plus_anime_6B": upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4) netscale = 4 elif model_name == "RealESRGAN_x2plus": upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2) netscale = 2 else: raise NotImplementedError("Model name not supported") upsampler = RealESRGANer( scale=netscale, model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"), dni_weight=None, model=upscale_model, tile=tile, tile_pad=tile_pad, pre_pad=pre_pad, half=half_precision, gpu_id=None, ) if use_face_enhancer: face_enhancer = GFPGANer( model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"), upscale=netscale, arch="clean", channel_multiplier=2, bg_upsampler=upsampler, ) upscaled_imgs = [] for img in base_images: img = numpy.array(img) if use_face_enhancer: _, _, enhance_result = face_enhancer.enhance( img, has_aligned=False, only_center_face=False, paste_back=True, ) else: enhance_result, _ = upsampler.enhance(img) upscaled_imgs.append(PIL.Image.fromarray(enhance_result)) return upscaled_imgs