2023-06-12 11:25:54 +09:00

237 lines
7.4 KiB
Python

from __future__ import annotations
import io
import os
import time
from modal import Image, Mount, Secret, Stub, method
import util
BASE_CACHE_PATH = "/vol/cache"
def download_models():
"""
Downloads the model from Hugging Face and saves it to the cache path using
diffusers.StableDiffusionPipeline.from_pretrained().
"""
import diffusers
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
vae = diffusers.AutoencoderKL.from_pretrained(
"stabilityai/sd-vae-ft-mse",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
vae.save_pretrained(cache_path, safe_serialization=True)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
model_repo_id,
subfolder="scheduler",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
scheduler.save_pretrained(cache_path, safe_serialization=True)
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
model_repo_id,
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
stub_image = Image.from_dockerfile(
path="./Dockerfile",
context_mount=Mount.from_local_file("./requirements.txt"),
).run_function(
download_models,
secrets=[Secret.from_dotenv(__file__)],
)
stub = Stub("stable-diffusion-cli")
stub.image = stub_image
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
class StableDiffusion:
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
import diffusers
import torch
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
if os.path.exists(cache_path):
print(f"The directory '{cache_path}' exists.")
else:
print(f"The directory '{cache_path}' does not exist. Download models...")
download_models()
torch.backends.cuda.matmul.allow_tf32 = True
vae = diffusers.AutoencoderKL.from_pretrained(
cache_path,
subfolder="vae",
)
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
)
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
vae=vae,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
@method()
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import torch
with torch.inference_mode():
with torch.autocast("cuda"):
base_images = self.pipe(
[inputs["prompt"]] * int(inputs["batch_size"]),
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
height=inputs["height"],
width=inputs["width"],
num_inference_steps=inputs["steps"],
guidance_scale=7.5,
max_embeddings_multiples=inputs["max_embeddings_multiples"],
).images
if inputs["upscaler"] != "":
uplcaled_images = self.upscale(
base_images=base_images,
model_name="RealESRGAN_x4plus",
scale_factor=4,
half_precision=False,
tile=700,
)
base_images.extend(uplcaled_images)
image_output = []
for image in base_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@method()
def upscale(
self,
base_images: list[Image.Image],
model_name: str = "RealESRGAN_x4plus",
scale_factor: float = 4,
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 0,
) -> list[Image.Image]:
"""
Upscales the given images using the given model.
https://github.com/xinntao/Real-ESRGAN
"""
import numpy
import torch
from basicsr.archs.rrdbnet_arch import RRDBNet
from PIL import Image
from realesrgan import RealESRGANer
from tqdm import tqdm
if model_name == "RealESRGAN_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRNet_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x4plus_anime_6B":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x2plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
else:
raise NotImplementedError("Model name not supported")
upsampler = RealESRGANer(
scale=netscale,
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
dni_weight=None,
model=upscale_model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=half_precision,
gpu_id=None,
)
torch.cuda.empty_cache()
upscaled_imgs = []
with tqdm(total=len(base_images)) as progress_bar:
for i, img in enumerate(base_images):
img = numpy.array(img)
enhance_result = upsampler.enhance(img)[0]
upscaled_imgs.append(Image.fromarray(enhance_result))
progress_bar.update(1)
torch.cuda.empty_cache()
return upscaled_imgs
@stub.local_entrypoint()
def entrypoint(
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
samples: int = 5,
batch_size: int = 1,
steps: int = 20,
upscaler: str = "",
):
"""
This function is the entrypoint for the Runway CLI.
The function pass the given prompt to StableDiffusion on Modal,
gets back a list of images and outputs images to local.
"""
inputs: dict[str, int | str] = {
"prompt": prompt,
"n_prompt": n_prompt,
"height": height,
"width": width,
"samples": samples,
"batch_size": batch_size,
"steps": steps,
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
# seed=-1
}
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
directory = util.make_directory()
sd = StableDiffusion()
for i in range(samples):
start_time = time.time()
images = sd.run_inference.call(inputs)
util.save_images(directory, images, i)
total_time = time.time() - start_time
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
util.save_prompts(inputs)