370 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			370 lines
		
	
	
		
			13 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import io
 | 
						|
import os
 | 
						|
 | 
						|
import PIL.Image
 | 
						|
from modal import Secret, method
 | 
						|
from setup import (
 | 
						|
    BASE_CACHE_PATH,
 | 
						|
    BASE_CACHE_PATH_CONTROLNET,
 | 
						|
    BASE_CACHE_PATH_LORA,
 | 
						|
    BASE_CACHE_PATH_TEXTUAL_INVERSION,
 | 
						|
    stub,
 | 
						|
)
 | 
						|
 | 
						|
 | 
						|
@stub.cls(
 | 
						|
    gpu="A10G",
 | 
						|
    secrets=[Secret.from_dotenv(__file__)],
 | 
						|
)
 | 
						|
class SD15:
 | 
						|
    """
 | 
						|
    SD15 is a class that runs inference using Stable Diffusion 1.5.
 | 
						|
    """
 | 
						|
 | 
						|
    def __enter__(self):
 | 
						|
        import diffusers
 | 
						|
        import torch
 | 
						|
        import yaml
 | 
						|
 | 
						|
        config = {}
 | 
						|
        with open("/config.yml", "r") as file:
 | 
						|
            config = yaml.safe_load(file)
 | 
						|
        self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
 | 
						|
        if os.path.exists(self.cache_path):
 | 
						|
            print(f"The directory '{self.cache_path}' exists.")
 | 
						|
        else:
 | 
						|
            print(f"The directory '{self.cache_path}' does not exist.")
 | 
						|
 | 
						|
        self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
 | 
						|
            self.cache_path,
 | 
						|
            custom_pipeline="lpw_stable_diffusion",
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            use_safetensors=True,
 | 
						|
        )
 | 
						|
 | 
						|
        # TODO: Add support for other schedulers.
 | 
						|
        self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
 | 
						|
            # self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
 | 
						|
            self.cache_path,
 | 
						|
            subfolder="scheduler",
 | 
						|
        )
 | 
						|
        # self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
 | 
						|
 | 
						|
        vae = config.get("vae")
 | 
						|
        if vae is not None:
 | 
						|
            self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
 | 
						|
                self.cache_path,
 | 
						|
                subfolder="vae",
 | 
						|
                use_safetensors=True,
 | 
						|
            )
 | 
						|
 | 
						|
        loras = config.get("loras")
 | 
						|
        if loras is not None:
 | 
						|
            for lora in loras:
 | 
						|
                path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
 | 
						|
                if os.path.exists(path):
 | 
						|
                    print(f"The directory '{path}' exists.")
 | 
						|
                else:
 | 
						|
                    print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
 | 
						|
                self.pipe.load_lora_weights(".", weight_name=path)
 | 
						|
 | 
						|
        textual_inversions = config.get("textual_inversions")
 | 
						|
        if textual_inversions is not None:
 | 
						|
            for textual_inversion in textual_inversions:
 | 
						|
                path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
 | 
						|
                if os.path.exists(path):
 | 
						|
                    print(f"The directory '{path}' exists.")
 | 
						|
                else:
 | 
						|
                    print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
 | 
						|
                self.pipe.load_textual_inversion(path)
 | 
						|
 | 
						|
        # TODO: Repair the controlnet loading.
 | 
						|
        controlnets = config.get("controlnets")
 | 
						|
        if controlnets is not None:
 | 
						|
            for controlnet in controlnets:
 | 
						|
                path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
 | 
						|
                controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
 | 
						|
                self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
 | 
						|
                    self.cache_path,
 | 
						|
                    controlnet=controlnet,
 | 
						|
                    custom_pipeline="lpw_stable_diffusion",
 | 
						|
                    scheduler=self.pipe.scheduler,
 | 
						|
                    vae=self.pipe.vae,
 | 
						|
                    torch_dtype=torch.float16,
 | 
						|
                    use_safetensors=True,
 | 
						|
                )
 | 
						|
 | 
						|
    def _count_token(self, p: str, n: str) -> int:
 | 
						|
        """
 | 
						|
        Count the number of tokens in the prompt and negative prompt.
 | 
						|
        """
 | 
						|
        from transformers import CLIPTokenizer
 | 
						|
 | 
						|
        tokenizer = CLIPTokenizer.from_pretrained(
 | 
						|
            self.cache_path,
 | 
						|
            subfolder="tokenizer",
 | 
						|
        )
 | 
						|
        token_size_p = len(tokenizer.tokenize(p))
 | 
						|
        token_size_n = len(tokenizer.tokenize(n))
 | 
						|
        token_size = token_size_p
 | 
						|
        if token_size_p <= token_size_n:
 | 
						|
            token_size = token_size_n
 | 
						|
 | 
						|
        max_embeddings_multiples = 1
 | 
						|
        max_length = tokenizer.model_max_length - 2
 | 
						|
        if token_size > max_length:
 | 
						|
            max_embeddings_multiples = token_size // max_length + 1
 | 
						|
 | 
						|
        print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
 | 
						|
 | 
						|
        return max_embeddings_multiples
 | 
						|
 | 
						|
    @method()
 | 
						|
    def run_txt2img_inference(
 | 
						|
        self,
 | 
						|
        prompt: str,
 | 
						|
        n_prompt: str,
 | 
						|
        height: int = 512,
 | 
						|
        width: int = 512,
 | 
						|
        batch_size: int = 1,
 | 
						|
        steps: int = 30,
 | 
						|
        seed: int = 1,
 | 
						|
        upscaler: str = "",
 | 
						|
        use_face_enhancer: bool = False,
 | 
						|
        fix_by_controlnet_tile: bool = False,
 | 
						|
        output_format: str = "png",
 | 
						|
    ) -> list[bytes]:
 | 
						|
        """
 | 
						|
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
						|
        """
 | 
						|
        import pillow_avif  # noqa: F401
 | 
						|
        import torch
 | 
						|
 | 
						|
        max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
 | 
						|
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
						|
        self.pipe.to("cuda")
 | 
						|
        self.pipe.enable_vae_tiling()
 | 
						|
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
						|
        with torch.autocast("cuda"):
 | 
						|
            generated_images = self.pipe(
 | 
						|
                prompt=prompt * batch_size,
 | 
						|
                negative_prompt=n_prompt * batch_size,
 | 
						|
                height=height,
 | 
						|
                width=width,
 | 
						|
                num_inference_steps=steps,
 | 
						|
                guidance_scale=7.5,
 | 
						|
                max_embeddings_multiples=max_embeddings_multiples,
 | 
						|
                generator=generator,
 | 
						|
            ).images
 | 
						|
 | 
						|
        base_images = generated_images
 | 
						|
 | 
						|
        """
 | 
						|
        Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
 | 
						|
        https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
 | 
						|
        """
 | 
						|
        if fix_by_controlnet_tile:
 | 
						|
            self.controlnet_pipe.to("cuda")
 | 
						|
            self.controlnet_pipe.enable_vae_tiling()
 | 
						|
            self.controlnet_pipe.enable_xformers_memory_efficient_attention()
 | 
						|
            for image in base_images:
 | 
						|
                image = self._resize_image(image=image, scale_factor=2)
 | 
						|
                with torch.autocast("cuda"):
 | 
						|
                    fixed_by_controlnet = self.controlnet_pipe(
 | 
						|
                        prompt=prompt * batch_size,
 | 
						|
                        negative_prompt=n_prompt * batch_size,
 | 
						|
                        num_inference_steps=steps,
 | 
						|
                        strength=0.3,
 | 
						|
                        guidance_scale=7.5,
 | 
						|
                        max_embeddings_multiples=max_embeddings_multiples,
 | 
						|
                        generator=generator,
 | 
						|
                        image=image,
 | 
						|
                    ).images
 | 
						|
            generated_images.extend(fixed_by_controlnet)
 | 
						|
            base_images = fixed_by_controlnet
 | 
						|
 | 
						|
        if upscaler != "":
 | 
						|
            upscaled = self._upscale(
 | 
						|
                base_images=base_images,
 | 
						|
                half_precision=False,
 | 
						|
                tile=700,
 | 
						|
                upscaler=upscaler,
 | 
						|
                use_face_enhancer=use_face_enhancer,
 | 
						|
            )
 | 
						|
            generated_images.extend(upscaled)
 | 
						|
 | 
						|
        image_output = []
 | 
						|
        for image in generated_images:
 | 
						|
            with io.BytesIO() as buf:
 | 
						|
                image.save(buf, format=output_format)
 | 
						|
                image_output.append(buf.getvalue())
 | 
						|
 | 
						|
        return image_output
 | 
						|
 | 
						|
    @method()
 | 
						|
    def run_img2img_inference(
 | 
						|
        self,
 | 
						|
        prompt: str,
 | 
						|
        n_prompt: str,
 | 
						|
        batch_size: int = 1,
 | 
						|
        steps: int = 30,
 | 
						|
        seed: int = 1,
 | 
						|
        upscaler: str = "",
 | 
						|
        use_face_enhancer: bool = False,
 | 
						|
        fix_by_controlnet_tile: bool = False,
 | 
						|
        output_format: str = "png",
 | 
						|
        base_image_url: str = "",
 | 
						|
    ) -> list[bytes]:
 | 
						|
        """
 | 
						|
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
						|
        """
 | 
						|
        import pillow_avif  # noqa: F401
 | 
						|
        import torch
 | 
						|
        from diffusers.utils import load_image
 | 
						|
 | 
						|
        max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
 | 
						|
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
						|
        self.pipe.to("cuda")
 | 
						|
        self.pipe.enable_vae_tiling()
 | 
						|
        self.pipe.enable_xformers_memory_efficient_attention()
 | 
						|
        with torch.autocast("cuda"):
 | 
						|
            generated_images = self.pipe(
 | 
						|
                prompt=prompt * batch_size,
 | 
						|
                negative_prompt=n_prompt * batch_size,
 | 
						|
                num_inference_steps=steps,
 | 
						|
                guidance_scale=7.5,
 | 
						|
                max_embeddings_multiples=max_embeddings_multiples,
 | 
						|
                generator=generator,
 | 
						|
                image=load_image(base_image_url),
 | 
						|
            ).images
 | 
						|
 | 
						|
        base_images = generated_images
 | 
						|
 | 
						|
        """
 | 
						|
        Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
 | 
						|
        https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
 | 
						|
        """
 | 
						|
        if fix_by_controlnet_tile:
 | 
						|
            self.controlnet_pipe.to("cuda")
 | 
						|
            self.controlnet_pipe.enable_vae_tiling()
 | 
						|
            self.controlnet_pipe.enable_xformers_memory_efficient_attention()
 | 
						|
            for image in base_images:
 | 
						|
                image = self._resize_image(image=image, scale_factor=2)
 | 
						|
                with torch.autocast("cuda"):
 | 
						|
                    fixed_by_controlnet = self.controlnet_pipe(
 | 
						|
                        prompt=prompt * batch_size,
 | 
						|
                        negative_prompt=n_prompt * batch_size,
 | 
						|
                        num_inference_steps=steps,
 | 
						|
                        strength=0.3,
 | 
						|
                        guidance_scale=7.5,
 | 
						|
                        max_embeddings_multiples=max_embeddings_multiples,
 | 
						|
                        generator=generator,
 | 
						|
                        image=image,
 | 
						|
                    ).images
 | 
						|
            generated_images.extend(fixed_by_controlnet)
 | 
						|
            base_images = fixed_by_controlnet
 | 
						|
 | 
						|
        if upscaler != "":
 | 
						|
            upscaled = self._upscale(
 | 
						|
                base_images=base_images,
 | 
						|
                half_precision=False,
 | 
						|
                tile=700,
 | 
						|
                upscaler=upscaler,
 | 
						|
                use_face_enhancer=use_face_enhancer,
 | 
						|
            )
 | 
						|
            generated_images.extend(upscaled)
 | 
						|
 | 
						|
        image_output = []
 | 
						|
        for image in generated_images:
 | 
						|
            with io.BytesIO() as buf:
 | 
						|
                image.save(buf, format=output_format)
 | 
						|
                image_output.append(buf.getvalue())
 | 
						|
 | 
						|
        return image_output
 | 
						|
 | 
						|
    def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
 | 
						|
        image = image.convert("RGB")
 | 
						|
        width, height = image.size
 | 
						|
        img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
 | 
						|
        return img
 | 
						|
 | 
						|
    def _upscale(
 | 
						|
        self,
 | 
						|
        base_images: list[PIL.Image],
 | 
						|
        half_precision: bool = False,
 | 
						|
        tile: int = 0,
 | 
						|
        tile_pad: int = 10,
 | 
						|
        pre_pad: int = 0,
 | 
						|
        upscaler: str = "",
 | 
						|
        use_face_enhancer: bool = False,
 | 
						|
    ) -> list[PIL.Image]:
 | 
						|
        """
 | 
						|
        Upscale the generated images by the upscaler when `upscaler` is selected.
 | 
						|
        The upscaler can be selected from the following list:
 | 
						|
        - `RealESRGAN_x4plus`
 | 
						|
        - `RealESRNet_x4plus`
 | 
						|
        - `RealESRGAN_x4plus_anime_6B`
 | 
						|
        - `RealESRGAN_x2plus`
 | 
						|
        https://github.com/xinntao/Real-ESRGAN
 | 
						|
        """
 | 
						|
        import numpy
 | 
						|
        from basicsr.archs.rrdbnet_arch import RRDBNet
 | 
						|
        from gfpgan import GFPGANer
 | 
						|
        from realesrgan import RealESRGANer
 | 
						|
 | 
						|
        model_name = upscaler
 | 
						|
        if model_name == "RealESRGAN_x4plus":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
						|
            netscale = 4
 | 
						|
        elif model_name == "RealESRNet_x4plus":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
 | 
						|
            netscale = 4
 | 
						|
        elif model_name == "RealESRGAN_x4plus_anime_6B":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
 | 
						|
            netscale = 4
 | 
						|
        elif model_name == "RealESRGAN_x2plus":
 | 
						|
            upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
 | 
						|
            netscale = 2
 | 
						|
        else:
 | 
						|
            raise NotImplementedError("Model name not supported")
 | 
						|
 | 
						|
        upsampler = RealESRGANer(
 | 
						|
            scale=netscale,
 | 
						|
            model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
 | 
						|
            dni_weight=None,
 | 
						|
            model=upscale_model,
 | 
						|
            tile=tile,
 | 
						|
            tile_pad=tile_pad,
 | 
						|
            pre_pad=pre_pad,
 | 
						|
            half=half_precision,
 | 
						|
            gpu_id=None,
 | 
						|
        )
 | 
						|
 | 
						|
        if use_face_enhancer:
 | 
						|
            face_enhancer = GFPGANer(
 | 
						|
                model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
 | 
						|
                upscale=netscale,
 | 
						|
                arch="clean",
 | 
						|
                channel_multiplier=2,
 | 
						|
                bg_upsampler=upsampler,
 | 
						|
            )
 | 
						|
 | 
						|
        upscaled_imgs = []
 | 
						|
        for img in base_images:
 | 
						|
            img = numpy.array(img)
 | 
						|
            if use_face_enhancer:
 | 
						|
                _, _, enhance_result = face_enhancer.enhance(
 | 
						|
                    img,
 | 
						|
                    has_aligned=False,
 | 
						|
                    only_center_face=False,
 | 
						|
                    paste_back=True,
 | 
						|
                )
 | 
						|
            else:
 | 
						|
                enhance_result, _ = upsampler.enhance(img)
 | 
						|
 | 
						|
            upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
 | 
						|
 | 
						|
        return upscaled_imgs
 |