2023-11-26 12:03:13 +09:00

125 lines
3.5 KiB
Python

from __future__ import annotations
import os
import diffusers
from modal import Image, Mount, Secret, Stub
BASE_CACHE_PATH = "/vol/cache"
BASE_CACHE_PATH_LORA = "/vol/cache/lora"
BASE_CACHE_PATH_TEXTUAL_INVERSION = "/vol/cache/textual_inversion"
BASE_CACHE_PATH_CONTROLNET = "/vol/cache/controlnet"
def download_file(url, file_name, file_path):
"""
Download files.
"""
from urllib.request import Request, urlopen
req = Request(url, headers={"User-Agent": "Mozilla/5.0"})
downloaded = urlopen(req).read()
dir_names = os.path.join(file_path, file_name)
os.makedirs(os.path.dirname(dir_names), exist_ok=True)
with open(dir_names, mode="wb") as f:
f.write(downloaded)
def download_controlnet(name: str, repo_id: str, token: str):
"""
Download a controlnet.
"""
cache_path = os.path.join(BASE_CACHE_PATH_CONTROLNET, name)
controlnet = diffusers.ControlNetModel.from_pretrained(
repo_id,
use_auth_token=token,
cache_dir=cache_path,
)
controlnet.save_pretrained(cache_path, safe_serialization=True)
def download_vae(name: str, model_url: str, token: str):
"""
Download a vae.
"""
cache_path = os.path.join(BASE_CACHE_PATH, name)
vae = diffusers.AutoencoderKL.from_single_file(
pretrained_model_link_or_path=model_url,
use_auth_token=token,
cache_dir=cache_path,
)
vae.save_pretrained(cache_path, safe_serialization=True)
def download_model(name: str, model_url: str, token: str):
"""
Download a model.
"""
cache_path = os.path.join(BASE_CACHE_PATH, name)
pipe = diffusers.StableDiffusionPipeline.from_single_file(
pretrained_model_link_or_path=model_url,
use_auth_token=token,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
def build_image():
"""
Build the Docker image.
"""
import yaml
token = os.environ["HUGGING_FACE_TOKEN"]
config = {}
with open("/config.yml", "r") as file:
config = yaml.safe_load(file)
model = config.get("model")
if model is not None:
download_model(name=model["name"], model_url=model["url"], token=token)
vae = config.get("vae")
if vae is not None:
download_vae(name=model["name"], model_url=vae["url"], token=token)
controlnets = config.get("controlnets")
if controlnets is not None:
for controlnet in controlnets:
download_controlnet(name=controlnet["name"], repo_id=controlnet["repo_id"], token=token)
loras = config.get("loras")
if loras is not None:
for lora in loras:
download_file(
url=lora["url"],
file_name=lora["name"],
file_path=BASE_CACHE_PATH_LORA,
)
textual_inversions = config.get("textual_inversions")
if textual_inversions is not None:
for textual_inversion in textual_inversions:
download_file(
url=textual_inversion["url"],
file_name=textual_inversion["name"],
file_path=BASE_CACHE_PATH_TEXTUAL_INVERSION,
)
stub = Stub("stable-diffusion-cli")
base_stub = Image.from_dockerfile(
path="Dockerfile",
context_mount=Mount.from_local_file("requirements.txt"),
)
stub.image = base_stub.extend(
dockerfile_commands=[
"FROM base",
"COPY config.yml /",
],
context_mount=Mount.from_local_file("config.yml"),
).run_function(
build_image,
secrets=[Secret.from_dotenv(__file__)],
)