stable-diffusion-cli-on-modal/app/stable_diffusion_1_5.py

304 lines
11 KiB
Python

from __future__ import annotations
import io
import os
import PIL.Image
from modal import Secret, enter, method
from setup import (
BASE_CACHE_PATH,
BASE_CACHE_PATH_CONTROLNET,
BASE_CACHE_PATH_LORA,
BASE_CACHE_PATH_TEXTUAL_INVERSION,
BASE_CACHE_PATH_UPSCALER,
app,
)
@app.cls(
gpu="A10G",
secrets=[Secret.from_dotenv(__file__)],
)
class SD15:
"""
SD15 is a class that runs inference using Stable Diffusion 1.5.
"""
@enter()
def _setup(self):
import diffusers
import torch
import yaml
config = {}
with open("/config.yml", "r") as file:
config = yaml.safe_load(file)
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{self.cache_path}' does not exist.")
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
self.cache_path,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
use_safetensors=True,
)
# TODO: Add support for other schedulers.
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
self.cache_path,
subfolder="scheduler",
)
# self.pipe.scheduler = diffusers.LCMScheduler.from_config(self.pipe.scheduler.config)
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
BASE_CACHE_PATH_UPSCALER,
torch_dtype=torch.float16,
)
vae = config.get("vae")
if vae is not None:
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
self.cache_path,
subfolder="vae",
use_safetensors=True,
)
loras = config.get("loras")
if loras is not None:
for lora in loras:
path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
if os.path.exists(path):
print(f"The directory '{path}' exists.")
else:
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
self.pipe.load_lora_weights(".", weight_name=path)
self.pipe.fuse_lora()
textual_inversions = config.get("textual_inversions")
if textual_inversions is not None:
for textual_inversion in textual_inversions:
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
if os.path.exists(path):
print(f"The directory '{path}' exists.")
else:
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
self.pipe.load_textual_inversion(path)
# TODO: Repair the controlnet loading.
controlnets = config.get("controlnets")
if controlnets is not None:
for controlnet in controlnets:
path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
self.cache_path,
controlnet=controlnet,
custom_pipeline="lpw_stable_diffusion",
scheduler=self.pipe.scheduler,
vae=self.pipe.vae,
torch_dtype=torch.float16,
use_safetensors=True,
)
def _count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
if token_size_p <= token_size_n:
token_size = token_size_n
max_embeddings_multiples = 1
max_length = tokenizer.model_max_length - 2
if token_size > max_length:
max_embeddings_multiples = token_size // max_length + 1
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
@method()
def run_txt2img_inference(
self,
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
batch_size: int = 1,
steps: int = 30,
seed: int = 1,
use_upscaler: bool = False,
fix_by_controlnet_tile: bool = False,
output_format: str = "png",
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import pillow_avif # noqa: F401
import torch
max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
generator = torch.Generator("cuda").manual_seed(seed)
self.pipe.to("cuda")
self.pipe.enable_vae_tiling()
self.pipe.enable_xformers_memory_efficient_attention()
with torch.autocast("cuda"):
generated_images = self.pipe(
prompt=prompt * batch_size,
negative_prompt=n_prompt * batch_size,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
).images
base_images = generated_images
"""
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
"""
if fix_by_controlnet_tile:
self.controlnet_pipe.to("cuda")
self.controlnet_pipe.enable_vae_tiling()
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
for image in base_images:
image = self._resize_image(image=image, scale_factor=2)
with torch.autocast("cuda"):
fixed_by_controlnet = self.controlnet_pipe(
prompt=prompt * batch_size,
negative_prompt=n_prompt * batch_size,
num_inference_steps=steps,
strength=0.3,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
image=image,
).images
generated_images.extend(fixed_by_controlnet)
base_images = fixed_by_controlnet
if use_upscaler:
self.upscaler.to("cuda")
self.upscaler.enable_xformers_memory_efficient_attention()
upscaled = self.upscaler(
prompt=prompt,
negative_prompt=n_prompt,
image=base_images[0],
num_inference_steps=steps,
guidance_scale=0,
generator=generator,
).images
generated_images.extend(upscaled)
image_output = []
for image in generated_images:
with io.BytesIO() as buf:
image.save(buf, format=output_format)
image_output.append(buf.getvalue())
return image_output
@method()
def run_img2img_inference(
self,
prompt: str,
n_prompt: str,
batch_size: int = 1,
steps: int = 30,
seed: int = 1,
use_upscaler: bool = False,
fix_by_controlnet_tile: bool = False,
output_format: str = "png",
base_image_url: str = "",
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import pillow_avif # noqa: F401
import torch
from diffusers.utils import load_image
max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
generator = torch.Generator("cuda").manual_seed(seed)
self.pipe.to("cuda")
self.pipe.enable_vae_tiling()
self.pipe.enable_xformers_memory_efficient_attention()
with torch.autocast("cuda"):
generated_images = self.pipe(
prompt=prompt * batch_size,
negative_prompt=n_prompt * batch_size,
num_inference_steps=steps,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
image=load_image(base_image_url),
).images
base_images = generated_images
"""
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
"""
if fix_by_controlnet_tile:
self.controlnet_pipe.to("cuda")
self.controlnet_pipe.enable_vae_tiling()
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
for image in base_images:
image = self._resize_image(image=image, scale_factor=2)
with torch.autocast("cuda"):
fixed_by_controlnet = self.controlnet_pipe(
prompt=prompt * batch_size,
negative_prompt=n_prompt * batch_size,
num_inference_steps=steps,
strength=0.3,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
image=image,
).images
generated_images.extend(fixed_by_controlnet)
base_images = fixed_by_controlnet
if use_upscaler:
self.upscaler.to("cuda")
self.upscaler.enable_xformers_memory_efficient_attention()
upscaled = self.upscaler(
prompt=prompt,
negative_prompt=n_prompt,
image=base_images[0],
num_inference_steps=steps,
guidance_scale=0,
generator=generator,
).images
generated_images.extend(upscaled)
image_output = []
for image in generated_images:
with io.BytesIO() as buf:
image.save(buf, format=output_format)
image_output.append(buf.getvalue())
return image_output
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
image = image.convert("RGB")
width, height = image.size
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
return img