181 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			6.2 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
from __future__ import annotations
 | 
						|
 | 
						|
import io
 | 
						|
import os
 | 
						|
 | 
						|
import PIL.Image
 | 
						|
from modal import Secret, enter, method
 | 
						|
from setup import BASE_CACHE_PATH, app
 | 
						|
 | 
						|
 | 
						|
@app.cls(
 | 
						|
    gpu="A10G",
 | 
						|
    secrets=[Secret.from_dotenv(__file__)],
 | 
						|
)
 | 
						|
class SDXLTxt2Img:
 | 
						|
    """
 | 
						|
    A class that wraps the Stable Diffusion pipeline and scheduler.
 | 
						|
    """
 | 
						|
 | 
						|
    @enter()
 | 
						|
    def _setup(self):
 | 
						|
        import diffusers
 | 
						|
        import torch
 | 
						|
        import yaml
 | 
						|
 | 
						|
        config = {}
 | 
						|
        with open("/config.yml", "r") as file:
 | 
						|
            config = yaml.safe_load(file)
 | 
						|
        self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
 | 
						|
        if os.path.exists(self.cache_path):
 | 
						|
            print(f"The directory '{self.cache_path}' exists.")
 | 
						|
        else:
 | 
						|
            print(f"The directory '{self.cache_path}' does not exist.")
 | 
						|
 | 
						|
        self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
 | 
						|
            self.cache_path,
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            use_safetensors=True,
 | 
						|
            variant="fp16",
 | 
						|
        )
 | 
						|
 | 
						|
        self.refiner_cache_path = self.cache_path + "-refiner"
 | 
						|
        self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
 | 
						|
            self.refiner_cache_path,
 | 
						|
            torch_dtype=torch.float16,
 | 
						|
            use_safetensors=True,
 | 
						|
            variant="fp16",
 | 
						|
        )
 | 
						|
 | 
						|
        # controlnets = config.get("controlnets")
 | 
						|
        # if controlnets is not None:
 | 
						|
        #     for controlnet in controlnets:
 | 
						|
        #         path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
 | 
						|
        #         controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
 | 
						|
        #         self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
 | 
						|
        #             self.cache_path,
 | 
						|
        #             controlnet=controlnet,
 | 
						|
        #             custom_pipeline="lpw_stable_diffusion",
 | 
						|
        #             scheduler=self.pipe.scheduler,
 | 
						|
        #             vae=self.pipe.vae,
 | 
						|
        #             torch_dtype=torch.float16,
 | 
						|
        #             use_safetensors=True,
 | 
						|
        #         )
 | 
						|
 | 
						|
    def _count_token(self, p: str, n: str) -> int:
 | 
						|
        """
 | 
						|
        Count the number of tokens in the prompt and negative prompt.
 | 
						|
        """
 | 
						|
        from transformers import CLIPTokenizer
 | 
						|
 | 
						|
        tokenizer = CLIPTokenizer.from_pretrained(
 | 
						|
            self.cache_path,
 | 
						|
            subfolder="tokenizer",
 | 
						|
        )
 | 
						|
        token_size_p = len(tokenizer.tokenize(p))
 | 
						|
        token_size_n = len(tokenizer.tokenize(n))
 | 
						|
        token_size = token_size_p
 | 
						|
        if token_size_p <= token_size_n:
 | 
						|
            token_size = token_size_n
 | 
						|
 | 
						|
        max_embeddings_multiples = 1
 | 
						|
        max_length = tokenizer.model_max_length - 2
 | 
						|
        if token_size > max_length:
 | 
						|
            max_embeddings_multiples = token_size // max_length + 1
 | 
						|
 | 
						|
        print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
 | 
						|
 | 
						|
        return max_embeddings_multiples
 | 
						|
 | 
						|
    @method()
 | 
						|
    def run_inference(
 | 
						|
        self,
 | 
						|
        prompt: str,
 | 
						|
        n_prompt: str,
 | 
						|
        height: int = 1024,
 | 
						|
        width: int = 1024,
 | 
						|
        steps: int = 30,
 | 
						|
        seed: int = 1,
 | 
						|
        use_upscaler: bool = False,
 | 
						|
        output_format: str = "png",
 | 
						|
    ) -> list[bytes]:
 | 
						|
        """
 | 
						|
        Runs the Stable Diffusion pipeline on the given prompt and outputs images.
 | 
						|
        """
 | 
						|
        import pillow_avif  # noqa
 | 
						|
        import torch
 | 
						|
 | 
						|
        generator = torch.Generator("cuda").manual_seed(seed)
 | 
						|
        self.pipe.to("cuda")
 | 
						|
        generated_images = self.pipe(
 | 
						|
            prompt=prompt,
 | 
						|
            negative_prompt=n_prompt,
 | 
						|
            height=height,
 | 
						|
            width=width,
 | 
						|
            generator=generator,
 | 
						|
        ).images
 | 
						|
        base_images = generated_images
 | 
						|
 | 
						|
        for image in base_images:
 | 
						|
            image = self._resize_image(image=image, scale_factor=2)
 | 
						|
            self.refiner.to("cuda")
 | 
						|
            refined_images = self.refiner(
 | 
						|
                prompt=prompt,
 | 
						|
                negative_prompt=n_prompt,
 | 
						|
                num_inference_steps=steps,
 | 
						|
                strength=0.1,
 | 
						|
                # guidance_scale=7.5,
 | 
						|
                generator=generator,
 | 
						|
                image=image,
 | 
						|
            ).images
 | 
						|
        generated_images.extend(refined_images)
 | 
						|
        base_images = refined_images
 | 
						|
 | 
						|
        """
 | 
						|
        Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
 | 
						|
        https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
 | 
						|
        """
 | 
						|
        # if fix_by_controlnet_tile:
 | 
						|
        #     max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
 | 
						|
        #     self.controlnet_pipe.to("cuda")
 | 
						|
        #     self.controlnet_pipe.enable_vae_tiling()
 | 
						|
        #     self.controlnet_pipe.enable_xformers_memory_efficient_attention()
 | 
						|
        #     for image in base_images:
 | 
						|
        #         image = self._resize_image(image=image, scale_factor=2)
 | 
						|
        #         with torch.autocast("cuda"):
 | 
						|
        #             fixed_by_controlnet = self.controlnet_pipe(
 | 
						|
        #                 prompt=prompt * batch_size,
 | 
						|
        #                 negative_prompt=n_prompt * batch_size,
 | 
						|
        #                 num_inference_steps=steps,
 | 
						|
        #                 strength=0.3,
 | 
						|
        #                 guidance_scale=7.5,
 | 
						|
        #                 max_embeddings_multiples=max_embeddings_multiples,
 | 
						|
        #                 generator=generator,
 | 
						|
        #                 image=image,
 | 
						|
        #             ).images
 | 
						|
        #     generated_images.extend(fixed_by_controlnet)
 | 
						|
        #     base_images = fixed_by_controlnet
 | 
						|
 | 
						|
        # if use_upscaler:
 | 
						|
        #     upscaled = self._upscale(
 | 
						|
        #         base_images=base_images,
 | 
						|
        #         half_precision=False,
 | 
						|
        #         tile=700,
 | 
						|
        #         upscaler=upscaler,
 | 
						|
        #     )
 | 
						|
        #     generated_images.extend(upscaled)
 | 
						|
 | 
						|
        image_output = []
 | 
						|
        for image in generated_images:
 | 
						|
            with io.BytesIO() as buf:
 | 
						|
                image.save(buf, format=output_format)
 | 
						|
                image_output.append(buf.getvalue())
 | 
						|
 | 
						|
        return image_output
 | 
						|
 | 
						|
    def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
 | 
						|
        image = image.convert("RGB")
 | 
						|
        width, height = image.size
 | 
						|
        img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
 | 
						|
        return img
 |