2023-06-05 10:16:09 +09:00

175 lines
5.4 KiB
Python

from __future__ import annotations
import io
import os
import time
from modal import Image, Mount, Secret, Stub, method
import util
BASE_CACHE_PATH = "/vol/cache"
def download_models():
"""
Downloads the model from Hugging Face and saves it to the cache path using
diffusers.StableDiffusionPipeline.from_pretrained().
"""
import diffusers
hugging_face_token = os.environ["HUGGING_FACE_TOKEN"]
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
model_repo_id,
subfolder="scheduler",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
scheduler.save_pretrained(cache_path, safe_serialization=True)
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
model_repo_id,
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
stub_image = Image.from_dockerfile(
path="./Dockerfile",
context_mount=Mount.from_local_file("./requirements.txt"),
).run_function(
download_models,
secrets=[Secret.from_dotenv(__file__)],
)
stub = Stub("stable-diffusion-cli")
stub.image = stub_image
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
class StableDiffusion:
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
import diffusers
import torch
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
if os.path.exists(cache_path):
print(f"The directory '{cache_path}' exists.")
else:
print(f"The directory '{cache_path}' does not exist. Download models...")
download_models()
torch.backends.cuda.matmul.allow_tf32 = True
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
)
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
custom_pipeline="lpw_stable_diffusion",
).to("cuda")
self.pipe.enable_xformers_memory_efficient_attention()
self.upscaler = diffusers.StableDiffusionLatentUpscalePipeline.from_pretrained(
"stabilityai/sd-x2-latent-upscaler", torch_dtype=torch.float16
).to("cuda")
self.upscaler.enable_xformers_memory_efficient_attention()
# model_id = "stabilityai/stable-diffusion-x4-upscaler"
# self.upscaler = diffusers.StableDiffusionUpscalePipeline.from_pretrained(
# , revision="fp16", torch_dtype=torch.float16
# ).to("cuda")
# self.upscaler.enable_xformers_memory_efficient_attention()
@method()
def run_inference(self, inputs: dict[str, int | str]) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import torch
with torch.inference_mode():
with torch.autocast("cuda"):
images = self.pipe(
[inputs["prompt"]] * int(inputs["batch_size"]),
negative_prompt=[inputs["n_prompt"]] * int(inputs["batch_size"]),
height=inputs["height"],
width=inputs["width"],
num_inference_steps=inputs["steps"],
guidance_scale=7.5,
max_embeddings_multiples=inputs["max_embeddings_multiples"],
).images
image_output = []
for image in images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
if inputs["upscaler"] != "":
upscaled_images = self.upscaler(
prompt=inputs["prompt"],
image=images,
num_inference_steps=inputs["steps"],
guidance_scale=0,
).images
for image in upscaled_images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@stub.local_entrypoint()
def entrypoint(
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
samples: int = 5,
batch_size: int = 1,
steps: int = 20,
upscaler: str = "",
):
"""
This function is the entrypoint for the Runway CLI.
The function pass the given prompt to StableDiffusion on Modal,
gets back a list of images and outputs images to local.
"""
inputs: dict[str, int | str] = {
"prompt": prompt,
"n_prompt": n_prompt,
"height": height,
"width": width,
"samples": samples,
"batch_size": batch_size,
"steps": steps,
"upscaler": upscaler, # sd_x2_latent_upscaler, sd_x4_upscaler
# seed=-1
}
inputs["max_embeddings_multiples"] = util.count_token(p=prompt, n=n_prompt)
directory = util.make_directory()
sd = StableDiffusion()
for i in range(samples):
start_time = time.time()
images = sd.run_inference.call(inputs)
util.save_images(directory, images, i)
total_time = time.time() - start_time
print(f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image).")
util.save_prompts(inputs)