2023-11-30 23:58:44 +09:00

291 lines
10 KiB
Python

from __future__ import annotations
import io
import os
import PIL.Image
from modal import Secret, method
from setup import (
BASE_CACHE_PATH,
BASE_CACHE_PATH_CONTROLNET,
BASE_CACHE_PATH_LORA,
BASE_CACHE_PATH_TEXTUAL_INVERSION,
stub,
)
@stub.cls(
gpu="A10G",
secrets=[Secret.from_dotenv(__file__)],
)
class StableDiffusion:
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
import diffusers
import torch
import yaml
config = {}
with open("/config.yml", "r") as file:
config = yaml.safe_load(file)
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{self.cache_path}' does not exist.")
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
self.cache_path,
custom_pipeline="lpw_stable_diffusion",
torch_dtype=torch.float16,
use_safetensors=True,
)
# TODO: Add support for other schedulers.
self.pipe.scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
# self.pipe.scheduler = diffusers.DPMSolverMultistepScheduler.from_pretrained(
self.cache_path,
subfolder="scheduler",
)
vae = config.get("vae")
if vae is not None:
self.pipe.vae = diffusers.AutoencoderKL.from_pretrained(
self.cache_path,
subfolder="vae",
use_safetensors=True,
)
loras = config.get("loras")
if loras is not None:
for lora in loras:
path = os.path.join(BASE_CACHE_PATH_LORA, lora["name"])
if os.path.exists(path):
print(f"The directory '{path}' exists.")
else:
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
self.pipe.load_lora_weights(".", weight_name=path)
textual_inversions = config.get("textual_inversions")
if textual_inversions is not None:
for textual_inversion in textual_inversions:
path = os.path.join(BASE_CACHE_PATH_TEXTUAL_INVERSION, textual_inversion["name"])
if os.path.exists(path):
print(f"The directory '{path}' exists.")
else:
print(f"The directory '{path}' does not exist. Need to execute 'modal deploy' first.")
self.pipe.load_textual_inversion(path)
# TODO: Repair the controlnet loading.
controlnets = config.get("controlnets")
if controlnets is not None:
for controlnet in controlnets:
path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
self.cache_path,
controlnet=controlnet,
custom_pipeline="lpw_stable_diffusion",
scheduler=self.pipe.scheduler,
vae=self.pipe.vae,
torch_dtype=torch.float16,
use_safetensors=True,
)
def _count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
if token_size_p <= token_size_n:
token_size = token_size_n
max_embeddings_multiples = 1
max_length = tokenizer.model_max_length - 2
if token_size > max_length:
max_embeddings_multiples = token_size // max_length + 1
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
height: int = 512,
width: int = 512,
batch_size: int = 1,
steps: int = 30,
seed: int = 1,
upscaler: str = "",
use_face_enhancer: bool = False,
fix_by_controlnet_tile: bool = False,
output_format: str = "png",
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import pillow_avif
import torch
max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
generator = torch.Generator("cuda").manual_seed(seed)
self.pipe.to("cuda")
self.pipe.enable_vae_tiling()
self.pipe.enable_xformers_memory_efficient_attention()
with torch.autocast("cuda"):
generated_images = self.pipe(
prompt * batch_size,
negative_prompt=n_prompt * batch_size,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
).images
base_images = generated_images
"""
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
"""
if fix_by_controlnet_tile:
self.controlnet_pipe.to("cuda")
self.controlnet_pipe.enable_vae_tiling()
self.controlnet_pipe.enable_xformers_memory_efficient_attention()
for image in base_images:
image = self._resize_image(image=image, scale_factor=2)
with torch.autocast("cuda"):
fixed_by_controlnet = self.controlnet_pipe(
prompt=prompt * batch_size,
negative_prompt=n_prompt * batch_size,
num_inference_steps=steps,
strength=0.3,
guidance_scale=7.5,
max_embeddings_multiples=max_embeddings_multiples,
generator=generator,
image=image,
).images
generated_images.extend(fixed_by_controlnet)
base_images = fixed_by_controlnet
if upscaler != "":
upscaled = self._upscale(
base_images=base_images,
half_precision=False,
tile=700,
upscaler=upscaler,
use_face_enhancer=use_face_enhancer,
)
generated_images.extend(upscaled)
image_output = []
for image in generated_images:
with io.BytesIO() as buf:
image.save(buf, format=output_format)
image_output.append(buf.getvalue())
return image_output
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
image = image.convert("RGB")
width, height = image.size
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
return img
def _upscale(
self,
base_images: list[PIL.Image],
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 0,
upscaler: str = "",
use_face_enhancer: bool = False,
) -> list[PIL.Image]:
"""
Upscale the generated images by the upscaler when `upscaler` is selected.
The upscaler can be selected from the following list:
- `RealESRGAN_x4plus`
- `RealESRNet_x4plus`
- `RealESRGAN_x4plus_anime_6B`
- `RealESRGAN_x2plus`
https://github.com/xinntao/Real-ESRGAN
"""
import numpy
from basicsr.archs.rrdbnet_arch import RRDBNet
from gfpgan import GFPGANer
from realesrgan import RealESRGANer
from tqdm import tqdm
model_name = upscaler
if model_name == "RealESRGAN_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRNet_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x4plus_anime_6B":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x2plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
else:
raise NotImplementedError("Model name not supported")
upsampler = RealESRGANer(
scale=netscale,
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
dni_weight=None,
model=upscale_model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=half_precision,
gpu_id=None,
)
if use_face_enhancer:
face_enhancer = GFPGANer(
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
upscale=netscale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
)
upscaled_imgs = []
with tqdm(total=len(base_images)) as progress_bar:
for img in base_images:
img = numpy.array(img)
if use_face_enhancer:
_, _, enhance_result = face_enhancer.enhance(
img,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
else:
enhance_result, _ = upsampler.enhance(img)
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
progress_bar.update(1)
return upscaled_imgs