193 lines
5.8 KiB
Python

from __future__ import annotations
import io
import os
import time
from datetime import date
from pathlib import Path
from modal import Image, Secret, Stub, method
stub = Stub("stable-diffusion-cli")
BASE_CACHE_PATH = "/vol/cache"
def download_models():
"""
Downloads the model from Hugging Face and saves it to the cache path using
diffusers.StableDiffusionPipeline.from_pretrained().
"""
import diffusers
import torch
hugging_face_token = os.environ["HUGGINGFACE_TOKEN"]
model_repo_id = os.environ["MODEL_REPO_ID"]
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
model_repo_id,
subfolder="scheduler",
use_auth_token=hugging_face_token,
cache_dir=cache_path,
)
scheduler.save_pretrained(cache_path, safe_serialization=True)
pipe = diffusers.StableDiffusionPipeline.from_pretrained(
model_repo_id,
use_auth_token=hugging_face_token,
torch_dtype=torch.float16,
cache_dir=cache_path,
)
pipe.save_pretrained(cache_path, safe_serialization=True)
stub_image = (
Image.debian_slim(python_version="3.10")
.pip_install(
"accelerate",
"diffusers[torch]>=0.15.1",
"ftfy",
"torch",
"torchvision",
"transformers~=4.25.1",
"triton",
"safetensors",
"torch>=2.0",
)
.pip_install("xformers", pre=True)
.run_function(
download_models,
secrets=[Secret.from_dotenv(__file__)],
)
)
stub.image = stub_image
# @stub.cls(gpu="A10G", secrets=[Secret.from_name("my-huggingface-secret")])
@stub.cls(gpu="A10G", secrets=[Secret.from_dotenv(__file__)])
class StableDiffusion:
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
def __enter__(self):
import diffusers
import torch
cache_path = os.path.join(BASE_CACHE_PATH, os.environ["MODEL_NAME"])
if os.path.exists(cache_path):
print(f"The directory '{cache_path}' exists.")
else:
print(f"The directory '{cache_path}' does not exist. Download models...")
download_models()
torch.backends.cuda.matmul.allow_tf32 = True
scheduler = diffusers.EulerAncestralDiscreteScheduler.from_pretrained(
cache_path,
subfolder="scheduler",
solver_order=2,
prediction_type="epsilon",
thresholding=False,
algorithm_type="dpmsolver++",
solver_type="midpoint",
denoise_final=True, # important if steps are <= 10
low_cpu_mem_usage=True,
device_map="auto",
)
self.pipe = diffusers.StableDiffusionPipeline.from_pretrained(
cache_path,
scheduler=scheduler,
low_cpu_mem_usage=True,
device_map="auto",
).to("cuda")
if self.pipe.safety_checker is not None:
self.pipe.safety_checker = lambda images, **kwargs: (images, False)
self.pipe.enable_xformers_memory_efficient_attention()
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
steps: int = 30,
batch_size: int = 1,
height: int = 512,
width: int = 512,
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import torch
with torch.inference_mode():
with torch.autocast("cuda"):
images = self.pipe(
[prompt] * batch_size,
negative_prompt=[n_prompt] * batch_size,
height=height,
width=width,
num_inference_steps=steps,
guidance_scale=7.5,
).images
# Convert to PNG bytes
image_output = []
for image in images:
with io.BytesIO() as buf:
image.save(buf, format="PNG")
image_output.append(buf.getvalue())
return image_output
@stub.local_entrypoint()
def entrypoint(
prompt: str,
n_prompt: str,
samples: int = 5,
steps: int = 30,
batch_size: int = 1,
height: int = 512,
width: int = 512,
):
"""
This function is the entrypoint for the Runway CLI.
The function pass the given prompt to StableDiffusion on Modal,
gets back a list of images and outputs images to local.
The function is called with the following arguments:
- prompt: the prompt to run inference on
- n_prompt: the negative prompt to run inference on
- samples: the number of samples to generate
- steps: the number of steps to run inference for
- batch_size: the batch size to use
- height: the height of the output image
- width: the width of the output image
"""
print(f"steps => {steps}, sapmles => {samples}, batch_size => {batch_size}")
directory = Path(f"./outputs/{date.today().strftime('%Y-%m-%d')}")
if not directory.exists():
directory.mkdir(exist_ok=True, parents=True)
stable_diffusion = StableDiffusion()
for i in range(samples):
start_time = time.time()
images = stable_diffusion.run_inference.call(
prompt,
n_prompt,
steps,
batch_size,
height,
width,
)
total_time = time.time() - start_time
print(
f"Sample {i} took {total_time:.3f}s ({(total_time)/len(images):.3f}s / image)."
)
for j, image_bytes in enumerate(images):
output_path = directory / f"output_{j}_{i}.png"
print(f"Saving it to {output_path}")
with open(output_path, "wb") as file:
file.write(image_bytes)