stable-diffusion-cli-on-modal/app/stable_diffusion_xl.py

262 lines
9.1 KiB
Python

from __future__ import annotations
import io
import os
import PIL.Image
from modal import Secret, enter, method
from setup import BASE_CACHE_PATH, app
@app.cls(
gpu="A10G",
secrets=[Secret.from_dotenv(__file__)],
)
class SDXLTxt2Img:
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
@enter()
def _setup(self):
import diffusers
import torch
import yaml
config = {}
with open("/config.yml", "r") as file:
config = yaml.safe_load(file)
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{self.cache_path}' does not exist.")
self.pipe = diffusers.AutoPipelineForText2Image.from_pretrained(
self.cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
self.refiner_cache_path = self.cache_path + "-refiner"
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
self.refiner_cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
variant="fp16",
)
# controlnets = config.get("controlnets")
# if controlnets is not None:
# for controlnet in controlnets:
# path = os.path.join(BASE_CACHE_PATH_CONTROLNET, controlnet["name"])
# controlnet = diffusers.ControlNetModel.from_pretrained(path, torch_dtype=torch.float16)
# self.controlnet_pipe = diffusers.StableDiffusionControlNetPipeline.from_pretrained(
# self.cache_path,
# controlnet=controlnet,
# custom_pipeline="lpw_stable_diffusion",
# scheduler=self.pipe.scheduler,
# vae=self.pipe.vae,
# torch_dtype=torch.float16,
# use_safetensors=True,
# )
def _count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
if token_size_p <= token_size_n:
token_size = token_size_n
max_embeddings_multiples = 1
max_length = tokenizer.model_max_length - 2
if token_size > max_length:
max_embeddings_multiples = token_size // max_length + 1
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
height: int = 1024,
width: int = 1024,
steps: int = 30,
seed: int = 1,
upscaler: str = "",
use_face_enhancer: bool = False,
output_format: str = "png",
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import pillow_avif # noqa
import torch
generator = torch.Generator("cuda").manual_seed(seed)
self.pipe.to("cuda")
generated_images = self.pipe(
prompt=prompt,
negative_prompt=n_prompt,
height=height,
width=width,
generator=generator,
).images
base_images = generated_images
for image in base_images:
image = self._resize_image(image=image, scale_factor=2)
self.refiner.to("cuda")
refined_images = self.refiner(
prompt=prompt,
negative_prompt=n_prompt,
num_inference_steps=steps,
strength=0.1,
# guidance_scale=7.5,
generator=generator,
image=image,
).images
generated_images.extend(refined_images)
base_images = refined_images
"""
Fix the generated images by the control_v11f1e_sd15_tile when `fix_by_controlnet_tile` is `True`.
https://huggingface.co/lllyasviel/control_v11f1e_sd15_tile
"""
# if fix_by_controlnet_tile:
# max_embeddings_multiples = self._count_token(p=prompt, n=n_prompt)
# self.controlnet_pipe.to("cuda")
# self.controlnet_pipe.enable_vae_tiling()
# self.controlnet_pipe.enable_xformers_memory_efficient_attention()
# for image in base_images:
# image = self._resize_image(image=image, scale_factor=2)
# with torch.autocast("cuda"):
# fixed_by_controlnet = self.controlnet_pipe(
# prompt=prompt * batch_size,
# negative_prompt=n_prompt * batch_size,
# num_inference_steps=steps,
# strength=0.3,
# guidance_scale=7.5,
# max_embeddings_multiples=max_embeddings_multiples,
# generator=generator,
# image=image,
# ).images
# generated_images.extend(fixed_by_controlnet)
# base_images = fixed_by_controlnet
if upscaler != "":
upscaled = self._upscale(
base_images=base_images,
half_precision=False,
tile=700,
upscaler=upscaler,
use_face_enhancer=use_face_enhancer,
)
generated_images.extend(upscaled)
image_output = []
for image in generated_images:
with io.BytesIO() as buf:
image.save(buf, format=output_format)
image_output.append(buf.getvalue())
return image_output
def _resize_image(self, image: PIL.Image.Image, scale_factor: int) -> PIL.Image.Image:
image = image.convert("RGB")
width, height = image.size
img = image.resize((width * scale_factor, height * scale_factor), resample=PIL.Image.LANCZOS)
return img
def _upscale(
self,
base_images: list[PIL.Image],
half_precision: bool = False,
tile: int = 0,
tile_pad: int = 10,
pre_pad: int = 0,
upscaler: str = "",
use_face_enhancer: bool = False,
) -> list[PIL.Image]:
"""
Upscale the generated images by the upscaler when `upscaler` is selected.
The upscaler can be selected from the following list:
- `RealESRGAN_x4plus`
- `RealESRNet_x4plus`
- `RealESRGAN_x4plus_anime_6B`
- `RealESRGAN_x2plus`
https://github.com/xinntao/Real-ESRGAN
"""
import numpy
from basicsr.archs.rrdbnet_arch import RRDBNet
from gfpgan import GFPGANer
from realesrgan import RealESRGANer
from tqdm import tqdm
model_name = upscaler
if model_name == "RealESRGAN_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRNet_x4plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x4plus_anime_6B":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=6, num_grow_ch=32, scale=4)
netscale = 4
elif model_name == "RealESRGAN_x2plus":
upscale_model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, num_block=23, num_grow_ch=32, scale=2)
netscale = 2
else:
raise NotImplementedError("Model name not supported")
upsampler = RealESRGANer(
scale=netscale,
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", f"{model_name}.pth"),
dni_weight=None,
model=upscale_model,
tile=tile,
tile_pad=tile_pad,
pre_pad=pre_pad,
half=half_precision,
gpu_id=None,
)
if use_face_enhancer:
face_enhancer = GFPGANer(
model_path=os.path.join(BASE_CACHE_PATH, "esrgan", "GFPGANv1.3.pth"),
upscale=netscale,
arch="clean",
channel_multiplier=2,
bg_upsampler=upsampler,
)
upscaled_imgs = []
for img in base_images:
img = numpy.array(img)
if use_face_enhancer:
_, _, enhance_result = face_enhancer.enhance(
img,
has_aligned=False,
only_center_face=False,
paste_back=True,
)
else:
enhance_result, _ = upsampler.enhance(img)
upscaled_imgs.append(PIL.Image.fromarray(enhance_result))
return upscaled_imgs