stable-diffusion-cli-on-modal/app/stable_diffusion_xl.py
2024-05-19 14:11:17 +09:00

134 lines
4.0 KiB
Python

from __future__ import annotations
import io
import os
import PIL.Image
from modal import Secret, enter, method
from setup import BASE_CACHE_PATH, app
@app.cls(
gpu="A10G",
secrets=[Secret.from_dotenv(__file__)],
)
class SDXLTxt2Img:
"""
A class that wraps the Stable Diffusion pipeline and scheduler.
"""
@enter()
def _setup(self):
import diffusers
import torch
import yaml
config = {}
with open("/config.yml", "r") as file:
config = yaml.safe_load(file)
self.cache_path = os.path.join(BASE_CACHE_PATH, config["model"]["name"])
if os.path.exists(self.cache_path):
print(f"The directory '{self.cache_path}' exists.")
else:
print(f"The directory '{self.cache_path}' does not exist.")
self.pipe = diffusers.StableDiffusionXLPipeline.from_pretrained(
self.cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
)
self.refiner = diffusers.StableDiffusionXLImg2ImgPipeline.from_pretrained(
self.cache_path,
torch_dtype=torch.float16,
use_safetensors=True,
)
def _count_token(self, p: str, n: str) -> int:
"""
Count the number of tokens in the prompt and negative prompt.
"""
from transformers import CLIPTokenizer
tokenizer = CLIPTokenizer.from_pretrained(
self.cache_path,
subfolder="tokenizer",
)
token_size_p = len(tokenizer.tokenize(p))
token_size_n = len(tokenizer.tokenize(n))
token_size = token_size_p
if token_size_p <= token_size_n:
token_size = token_size_n
max_embeddings_multiples = 1
max_length = tokenizer.model_max_length - 2
if token_size > max_length:
max_embeddings_multiples = token_size // max_length + 1
print(f"token_size: {token_size}, max_embeddings_multiples: {max_embeddings_multiples}")
return max_embeddings_multiples
@method()
def run_inference(
self,
prompt: str,
n_prompt: str,
height: int = 1024,
width: int = 1024,
steps: int = 30,
seed: int = 1,
use_upscaler: bool = False,
output_format: str = "png",
) -> list[bytes]:
"""
Runs the Stable Diffusion pipeline on the given prompt and outputs images.
"""
import pillow_avif # noqa
import torch
generator = torch.Generator("cuda").manual_seed(seed)
self.pipe.to("cuda")
self.pipe.enable_vae_tiling()
self.pipe.enable_xformers_memory_efficient_attention()
generated_image = self.pipe(
prompt=prompt,
negative_prompt=n_prompt,
guidance_scale=7,
height=height,
width=width,
generator=generator,
num_inference_steps=steps,
).images[0]
generated_images = [generated_image]
if use_upscaler:
self.refiner.to("cuda")
self.refiner.enable_vae_tiling()
self.refiner.enable_xformers_memory_efficient_attention()
base_image = self._double_image_size(generated_image)
image = self.refiner(
prompt=prompt,
negative_prompt=n_prompt,
num_inference_steps=50,
strength=0.3,
guidance_scale=7.5,
generator=generator,
image=base_image,
).images[0]
generated_images.append(image)
image_output = []
for image in generated_images:
with io.BytesIO() as buf:
image.save(buf, format=output_format)
image_output.append(buf.getvalue())
return image_output
def _double_image_size(self, image: PIL.Image.Image) -> PIL.Image.Image:
image = image.convert("RGB")
width, height = image.size
return image.resize((width * 2, height * 2), resample=PIL.Image.LANCZOS)